zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. (English) Zbl 1221.76019
Summary: A numerical study is conducted to investigate the transport mechanism of mixed convection in a lid-driven enclosure filled with nanofluids. The two vertical walls of the enclosure are insulated while the horizontal walls are kept at constant temperatures with the top surface moving at a constant speed. The numerical approach is based on the finite volume technique with a staggered grid arrangement. The SIMPLE algorithm is used for handling the pressure velocity coupling. Numerical solutions are obtained for a wide range of parameters and copper-water nanofluid is used with Pr=6·2. The streamlines, isotherm plots and the variation of the average Nusselt number at the hot wall are presented and discussed. It is found that both the aspect ratio and solid volume fraction affect the fluid flow and heat transfer in the enclosure. Also, the variation of the average Nusselt number is linear with solid volume fraction.
MSC:
76A05Non-Newtonian fluids
76M12Finite volume methods (fluid mechanics)
References:
[1]Khanafer, K.; Vafai, K.; Lightstone, M.: Int J heat mass transfer, Int J heat mass transfer 46, 3639-3653 (2003)
[2]Tiwari, R. K.; Das, M. K.: Int J heat mass transfer, Int J heat mass transfer 50, 2002-2018 (2007)
[3]Kim, J.; Kang, Y. T.; Choi, C. K.: Phys fluids, Phys fluids 16, 2395-2401 (2004)
[4]Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.: Appl phys lett, Appl phys lett 78, 718-720 (2001)
[5]Xuan, Y.; Li, Q.: ASME J heat transfer, ASME J heat transfer 125, 151-155 (2003)
[6]Das, S. K.; Choi, S. U. S.; Patel, H. E.: Heat transfer eng, Heat transfer eng 27, 3-19 (2006)
[7]Wang, X. -Q.; Mujumdar, A. S.: Int J thermal sci, Int J thermal sci 46, 1-19 (2007)
[8]Putra, N.; Roetzel, W.; Das, S. K.: Heat mass transfer, Heat mass transfer 39, 775-784 (2003)
[9]Prasad, Y. S.; Das, M. K.: Int J heat mass transfer, Int J heat mass transfer 50, 3583-3598 (2007)
[10]Wang, M.; Kang, Q.; Ning, P.: Appl therm eng, Appl therm eng 29, 418-421 (2009)
[11]Tzeng, S. C.; Lin, C. W.; Huang, K. D.: Acta mech, Acta mech 179, 11-23 (2005)
[12]Nguyen, C. T.; Roy, G.; Gauthier, C.; Galanis, N.: Appl thermal eng, Appl thermal eng 27, 1501-1506 (2007)
[13]Brinkman, H. C.: J chem phys, J chem phys 20, 571-581 (1952)
[14]Patankar, S. V.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
[15]Versteeg, H. K.; Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method, (1995)
[16]Van Doormaal, J. P.; Raithby, G. D.: Numer heat transfer part A, Numer heat transfer part A 7, 147-163 (1984)
[17]De Vahl Davis, D.: Int J numer meth fluids, Int J numer meth fluids 3, 249-264 (1983)
[18]Manzari, M. T.: Int J numer meth heat fluid flow, Int J numer meth heat fluid flow 9, 860-887 (1999)
[19]Wan, D. C.; Patnaik, B. S. V.; Wei, G. W.: Numer heat transfer part B, Numer heat transfer part B 40, 199-228 (2001)