zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical solution of stagnation-point flow of a viscoelastic fluid towards a stretching surface. (English) Zbl 1221.76027
Summary: The problem of stagnation-point flow of a viscoelastic fluid towards a stretching surface [T.R. Mahapatra, A.S. Gupta, Int. J. Non-Linear Mech. 39, No. 5, 811–820 (2004; Zbl 1221.76035)] is solved analytically by using the homotopy analysis method (HAM). The results for velocity and temperature profiles are obtained. It is noted that the behavior of the HAM solution for velocity and temperature profiles is in good agreement with the numerical solution given in [loc. cit.].
76A10Viscoelastic fluids
[1]Mahapatra, T. R.; Gupta, A. S.: Stagnation-point flow of a viscoelastic fluid towards a stretching surface, Int J non-linear mech 39, 811 (2004) · Zbl 1221.76035 · doi:10.1016/S0020-7462(03)00044-1
[2]Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problem. Ph.D. Thesis. Shanghai Jiao Tong University, 1992.
[3]Liao, S. J.: An explicit, totally analytic approximate solution for Blasius viscous flow problems, Int J non-linear mech 34, 759 (1999)
[4]Liao, S. J.: A simple way to enlarge the convergence region of perturbation approximations, Int J non-linear dyn 19, No. 2, 93 (1999) · Zbl 0949.70003 · doi:10.1023/A:1008373627897
[5]Liao, S. J.: A uniformly valid analytic solution of 2-D viscous flow past a semi-infinite flat plate, J fluid mech 385, 101 (1999) · Zbl 0931.76017 · doi:10.1017/S0022112099004292
[6]Liao, S. J.; Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems, J fluid mech 453, 411 (2002) · Zbl 1007.76014 · doi:10.1017/S0022112001007169
[7]Liao, S. J.: An analytic approximation of the drag coefficient for the viscous flow past a sphere, Int J non-linear mech 7, 1 (2002) · Zbl 1116.76335 · doi:10.1016/S0020-7462(00)00092-5
[8]Liao, S. J.: An explicit analytic solution to the Thomas-Fermi equation, Appl math comput 144, 433 (2003) · Zbl 1034.34005 · doi:10.1016/S0096-3003(02)00423-X
[9]Liao, S. J.: An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int J non-linear mech 38, No. 8, 1173 (2003)
[10]Wang, C.; Zhu, J. M.; Liao, S. J.; Pop, I.: On the explicit analytic solution of cheng – chang equation, Int J heat mass transfer 46, No. 10, 1855 (2003) · Zbl 1029.76050 · doi:10.1016/S0017-9310(02)00470-2
[11]Ayub, M.; Rashid, A.; Hayat, T.: Exact solution of a third grade fluid past a porous plate using homotopy analysis method, Int J eng sci 41, No. 18, 2091 (2003) · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[12]Hayat, T.; Khan, M.; Ayub, M.: On the explicit analytic solution of an Oldroyd 6-constant fluid, Int J eng sci 42, 123 (2004) · Zbl 1211.76009 · doi:10.1016/S0020-7225(03)00281-7
[13]Hayat, T.; Khan, M.; Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech 168, 213 (2004) · Zbl 1063.76108 · doi:10.1007/s00707-004-0085-2
[14]Crane, L. J.: Flow past a stretching plate, Zamp 21, 645 (1970)
[15]Carragher, P.; Crane, L. J.: Heat transfer on a continuous stretching sheet, Zamm 62, 564 (1982)
[16]Dutta, B. K.; Roy, P.; Gupta, A. S.: Temperature field in the flow over a stretching surface with uniform heat flux, Int comm heat mass transfer 12, 89 (1985)
[17]Chiam, T. C.: Stagnation-point flow towards a stretching plate, J phys soc jpn 63, 2443 (1994)
[18]Mahapatra, T. R.; Gupta, A. S.: Heat transfer in stagnation-point flow towards a stretching sheet, Heat mass transfer 38, 517 (2002)
[19]Rajagopal, K. R.; Na, T. Y.; Gupta, A. S.: Flow of a viscoelastic fluid over a stretching sheet, Rheol acta 23, 213 (1984)
[20]Bhattacharya, S.; Pal, A.; Gupta, A. S.: Heat transfer in the flow of a viscoelastic fluid over a stretching surface, Heat mass transfer 34, 41 (1998)
[21]Vajravelu, K.; Roper, T.: Flow and heat transfer in a second grade fluid over a stretching sheet, Int J non-linear mech 34, 1031 (1999) · Zbl 1006.76005 · doi:10.1016/S0020-7462(98)00073-0
[22]Nazar, R.; Amin, N.; Filip, D.; Pop, I.: Unsteady boundary layer flow in the region of the stagnation-point on a stretching sheet, Int J eng sci 42, 1241 (2004) · Zbl 1211.76042 · doi:10.1016/j.ijengsci.2003.12.002