zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An explicit series solution of the squeezing flow between two infinite plates by means of the homotopy analysis method. (English) Zbl 1221.76158
Summary: We investigated an axisymmetric Newtonian fluid squeezed between two parallel plates. The steady nonlinear governing equations are reduced to a single differential equation using integrability condition. Homotopy analysis method (HAM) is used to solve the nonlinear differential equation analytically. Numerical solutions indicate this method is satisfactory.
MSC:
76M25Other numerical methods (fluid mechanics)
76D99Incompressible viscous fluids
References:
[1]Stefan, M. J.: Versuch über die scheinbare adhesion, Akad wissensch wien math natur 69, 713 (1874)
[2]Reynolds, O.: On the theory of lubrication, Trans royal soc 177, 157 (1886)
[3]Archibald, F. R.: Load capacity and time relations in squeeze films, Trans ASME J lub technol 78, 29-35 (1956)
[4]Grimm, R. J.: Squeezing flows of Newtonian liquid films an analysis include the fluid inertia, Appl sci res 32, 146-149 (1976)
[5]Wolfe, W. A.: Squeeze film pressures, Appl sci res 14, 77-90 (1964 – 1965)
[6]Kuzma, D. C.: Fluid inertia effects in squeeze films, Appl sci res 18, 15-20 (1967)
[7]Ishizawa, S.: Squeezing flows of Newtonian liquid films an analysis include the fluid inertia, Appl sci res 32, 149-166 (1976)
[8]Tichy, J.; Winner, W. O.: Inertial considerations in parallel circular squeeze film bearings, Trans ASME J lub technol 92, 588-592 (1970)
[9]Wang, C. Y.; Watson, L. T.: Squeezing of a viscous fluid between elliptic plates, Appl sci res 35, 195-207 (1979) · Zbl 0414.76025 · doi:10.1007/BF00382705
[10]Usha, R.; Sridharan, R.: Arbitrary squeezing of a viscous fluid between elliptic plates, Fluid dynam res 18, 35-51 (1996)
[11]Laun, H. M.; Rady, M.; Hassager: Analytical solutions for squeeze flow with partial wall slip, J non-Newtonian fluid mech 81, 1-15 (1999) · Zbl 0932.76005 · doi:10.1016/S0377-0257(98)00083-4
[12]Hamdan, M. H.; Baron, R. M.: Squeeze flow of dusty fluids, Appl sci res 49, 345-354 (1992)
[13]Nhan, P. T.: Squeeze flow of a viscoelastic solid, J non-Newtonian fluid mech 95, 43-362 (2000) · Zbl 0995.76007 · doi:10.1016/S0377-0257(00)00175-0
[14]Nayfeh, A. H.: Introduction to perturbation techniques, (1979)
[15]Rand, R. H.; Armbruster, D.: Perturbation methods, bifurcation theory and computer algebraic, (1987)
[16]Liu GL. Weighted residual decomposition method in non-linear applied Mathematics. In: Proc of the 6th Congress of Modern Mathematical and Mechanics, Suzhou, China. 1995.
[17]Liao, S. J.: Beyond perturbation, Introduction to homotopy analysis method (2004)
[18]Liao SJ. Proposed homotopy analysis techniques for the solution of nonlinear problems. PhD dissertation, Shanghai Jiao Tong University, 1992.
[19]Liao, S. J.: An approximate solution technique not depending on small parameters: A special example, Int J non-linear mech 30, No. 3, 371-380 (1995) · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[20]Liao, S. J.: An approximate solution technique which does not depend upon small parameters (Part 2): an application in fluid mechanics, Int J non-linear mech 32, No. 5, 815-822 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[21]Liao, S. J.: An explicit, totally analytic approximation of Blasius viscous flow problems, Int J non-linear mech 34, No. 4, 759-778 (1999)
[22]Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl math comput 147, No. 2, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[23]Liao, S. J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud appl math 117, 239-263 (2006) · Zbl 1145.76352 · doi:10.1111/j.1467-9590.2006.00354.x
[24]Liao, S. J.; Magyari, E.: Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones, Zamp 57, No. 5, 777-792 (2006) · Zbl 1101.76056 · doi:10.1007/s00033-006-0061-x
[25]Allan, F. M.; Syam, M. I.: On the analytic solution of non-homogeneous Blasius problem, J comput appl math 182, 362-371 (2005) · Zbl 1071.65108 · doi:10.1016/j.cam.2004.12.017
[26]Hayat, T.; Sajid, M.: On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder, Phys lett A 361, 316-322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[27]Sajid M, Hayat T and Asghar S. Comparison between the HAM and HPM solutions of tin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dynam, in press. · Zbl 1181.76031 · doi:10.1007/s11071-006-9140-y
[28]Allan FM. Derivation of the Adomian’s decomposition method using the homotopy analysis method. Appl Math Comput, in press. · Zbl 1125.65063 · doi:10.1016/j.amc.2006.12.074
[29]Liao, S. J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J fluid mech 488, 189-212 (2003) · Zbl 1063.76671 · doi:10.1017/S0022112003004865
[30]Wu, Y. Y.; Wang, C.; Liao, S. J.: Solving the one loop solution of the Vakhnenko equation by means of the homotopy analysis method, Chaos solitons & fractals 23, 1733-1740 (2005) · Zbl 1069.35060 · doi:10.1016/j.chaos.2004.06.081
[31]Hayat, T.; Khan, M.: Homotopy solution for a generalized second grade fluid past a porous plate, Non-linear dynam 42, 395-405 (2005) · Zbl 1094.76005 · doi:10.1007/s11071-005-7346-z
[32]Cheng, J.; Liao, S. J.; Pop, I.: Analytic series solution for unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium, Transp porous media 61, 365-379 (2005)
[33]Hayat T, Sajid M, Ayub M.A note on series solution for generalized Couette flow. Commun Non-linear Sci Numer Simul, doi:10.1016/j.cnsns.2006.02.009.
[34]Bouremel, Y.: Explicit series solution for the glauert-jet problem by means of the homotopy analysis method, Commun non-linear sci numer simul 12, 714-724 (2007) · Zbl 1115.76065 · doi:10.1016/j.cnsns.2005.07.001
[35]Xu, H.: An explicit analytic solution for free convection about a vertical flat plate embedded in a porous media by means of homotopy analysis method, Appl math comput 158, 433-443 (2004) · Zbl 1058.76064 · doi:10.1016/j.amc.2003.08.102
[36]Mehmood A, Ali A, Shah T. Heat transfer analysis of unsteady boundary layer flow by homotopy analysis method. Commun Non-linear Sci Numer Simul, doi:10.1016/j.cnsns.2006.09.008.
[37]Shah, A.; Islam, S.; Siddiqui, A. M.: On the explicit analytical solution of a slider bearing with non-Newtonian fluid, IJCSES int J comput sci eng syst 1, No. 1 (2007)
[38]Siddiqui AM, Ahmed M, Islam S, Ghori QK. Homotopy analysis of Couette and Poiseuille flows for fourth grade fluids. Acta Mech, 2005, doi:10.1007/s00707-005-0260-0, printed in Austria.
[39]Sajid, M.; Hayat, T.; Asghar, S.: Non-similar solution for the axisymmetric flow of a third-grade fluid over a radially stretching sheet, Acta mech 189, 193-205 (2007) · Zbl 1117.76006 · doi:10.1007/s00707-006-0430-8
[40]Sajid, M.; Hayat, T.: Non-similar series solution for boundary layer flow of a third-order fluid over a stretching sheet, Appl math comput 189, 1576-1585 (2007) · Zbl 1120.76004 · doi:10.1016/j.amc.2006.12.038
[41]Sajid, M.; Hayat, T.; Asghar, S.: On the analytic solution of the steady flow of a fourth grade fluid, Phys lett A 355, 18-26 (2006)
[42]Hayat, T.; Abbas, Z.; Sajid, M.: Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Phys lett A 358, 396-403 (2006) · Zbl 1142.76511 · doi:10.1016/j.physleta.2006.04.117
[43]Papanastasiou, T. C.; Georgiou, G. C.; Alexandrou, A. N.: Viscous fluid flow, (2000)
[44]Abbasbandy, S.: The application of the homotopy analysis method to nonlinear equations arising in heat transfer, Phys lett A 360, 109-113 (2006)
[45]Abbasbandy, S.: The application of homotopy analysis method to solve a generalized Hirota – satsuma coupled KdV equation, Phys lett A 361, 478-483 (2007)