zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays. (English) Zbl 1221.82078
Summary: In this Letter, we have dealt with the problem of lag synchronization and parameter identification for a class of chaotic neural networks with stochastic perturbation, which involve both the discrete and distributed time-varying delays. By the adaptive feedback technique, several sufficient conditions have been derived to ensure the synchronization of stochastic chaotic neural networks. Moreover, all the connection weight matrices can be estimated while the lag synchronization is achieved in mean square at the same time. The corresponding simulation results are given to show the effectiveness of the proposed method.
MSC:
82C32Neural nets (statistical mechanics)
82C31Stochastic methods in time-dependent statistical mechanics
92B20General theory of neural networks (mathematical biology)
60K20Applications of Markov renewal processes
90B15Network models, stochastic (optimization)
34B45Boundary value problems for ODE on graphs and networks
34C28Complex behavior, chaotic systems (ODE)
34H10Chaos control (ODE)
34D06Synchronization
93C10Nonlinear control systems
93B52Feedback control