zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Group scheduling problems with simultaneous considerations of learning and deterioration effects on a single-machine. (English) Zbl 1221.90057
Summary: Group technology is important to manufacturing as it helps increase the efficiency of production and decrease the requirement of facilities. In this paper we investigate group scheduling problems with simultaneous considerations of learning and deterioration effects on a single-machine setting. The learning phenomenon is implemented to model the setup time of groups. Three models of deteriorating for the job processing time within a group are examined. We show that all the problems studied are polynomially solvable with or without the presence of certain conditions where the objective is to find an optimal schedule for minimizing the makespan. We also investigate the minimization of the total completion time. We proved that one of the deterioration models examined in this study can also be solved in a polynomial time algorithm under certain conditions.
90B35Scheduling theory, deterministic
[1]Biskup, D.: Single-machine scheduling with learning considerations, Eur. J. Oper. res. 115, 173-178 (1999) · Zbl 0946.90025 · doi:10.1016/S0377-2217(98)00246-X
[2]Cheng, T. C. E.; Wang, G.: Single machine scheduling with learning effect considerations, Ann. oper. Res. 98, 273-290 (2000) · Zbl 0967.68019 · doi:10.1023/A:1019216726076
[3]Mosheiov, G.; Sidney, J. B.: Scheduling with general job-dependent learning curves, Eur. J. Oper. res. 147, 665-670 (2003) · Zbl 1037.90529 · doi:10.1016/S0377-2217(02)00358-2
[4]Kuo, W. -H.; Yang, D. -L.: Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect, Eur. J. Oper. res. 174, 1184-1190 (2006) · Zbl 1103.90341 · doi:10.1016/j.ejor.2005.03.020
[5]Biskup, D.: A state-of-the-art review on scheduling with learning effects, Eur. J. Oper. res. 188, 315-329 (2008) · Zbl 1129.90022 · doi:10.1016/j.ejor.2007.05.040
[6]Janiak, A.; Rudek, R.: Experience based approach to scheduling problems with the learning effect, IEEE trans. Syst. man cybernet. Part A 39, 344-357 (2009)
[7]Browne, S.; Yechiali, U.: Scheduling deteriorating jobs on a single processor, Oper. res. 38, 495-498 (1990) · Zbl 0703.90051 · doi:10.1287/opre.38.3.495
[8]Kunnathur, A. S.; Gupta, S. K.: Minimizing the makespan with late start penalties added to processing times in a single facility scheduling problem, Eur. J. Oper. res. 47, 56-64 (1990) · Zbl 0717.90034 · doi:10.1016/0377-2217(90)90089-T
[9]Mosheiov, G.: Scheduling jobs with step-deterioration: minimizing makespan on a single- and multi-machine, Comput. ind. Eng. 28, 869-879 (1995)
[10]Alidaee, B.; Womer, N. K.: Scheduling with time dependent processing times: review and extensions, J. oper. Res. soc. 50, 711-720 (1999) · Zbl 1054.90542
[11]Cheng, T. C. E.; Ding, O.; Lin, B. M. T.: A concise survey of scheduling with time-dependent processing times, Eur. J. Oper. res. 152, 1-13 (2004) · Zbl 1030.90023 · doi:10.1016/S0377-2217(02)00909-8
[12]Bachman, A.; Janiak, A.: Scheduling jobs with position-dependent processing times, J. oper. Res. soc. 55, 257-264 (2004) · Zbl 1095.90033 · doi:10.1057/palgrave.jors.2601689
[13]Gawiejnowicz, S.: Time-dependent scheduling, (2008)
[14]Ham, I.; Hitomi, K.; Yoshida, T.: Group technology: applications to production management, (1985)
[15]Guo, A. -X.; Wang, J. -B.: Single machine scheduling with deteriorating jobs under the group technology assumption, Int. J. Pure appl. Math. 18, 225-231 (2005) · Zbl 1139.90365
[16]Xu, F.; Guo, A. -X.; Wang, J. -B.; Shan, F.: Single machine scheduling problem with linear deterioration under group technology, Int. J. Pure appl. Math. 28, 401-406 (2006) · Zbl 1152.90474
[17]Kuo, W. -H.; Yang, D. -L.: Single-machine group scheduling with a time-dependent learning effect, Comput. oper. Res. 33, 2099-2112 (2006) · Zbl 1086.90025 · doi:10.1016/j.cor.2004.11.024
[18]Wang, J. -B.; Guo, A. -X.; Shan, F.; Jiang, B.; Wang, L. -Y.: Single machine group scheduling under decreasing linear deterioration, J. appl. Math. comput. 24, 283-293 (2007) · Zbl 1148.90326 · doi:10.1007/BF02832317
[19]Wu, C. -C.; Shiau, Y. -R.; Lee, W. -C.: Single-machine group scheduling problems with deterioration consideration, Comput. oper. Res. 35, 1652-1659 (2008) · Zbl 1211.90094 · doi:10.1016/j.cor.2006.09.008
[20]Lee, W. -C.; Wu, C. -C.: A note on single-machine group scheduling problems with position-based learning effect, Appl. math. Model. 33, 2159-2163 (2009) · Zbl 1205.90128 · doi:10.1016/j.apm.2008.05.020
[21]Wang, J. -B.; Gao, W. J.; Wang, L. Y.; Wang, D.: Single machine group scheduling with general linear deterioration to minimize the makespan, Int. J. Adv. manuf. Technol. 43, 146-150 (2009)
[22]Yang, S. -J.; Yang, D. -L.: Single-machine scheduling simultaneous with position-based and sum-of-processing-times-based learning considerations under group technology assumption, Appl. math. Model. 35, 2068-2074 (2011) · Zbl 1217.90156 · doi:10.1016/j.apm.2010.11.041
[23]Wang, J. -B.: Single machine scheduling with time-dependent learning effect and deteriorating jobs, J. oper. Res. soc. 60, 583-586 (2009) · Zbl 1163.90515 · doi:10.1057/palgrave.jors.2602607
[24]Toksar, M. D.; Oron, D.; Güner, E.: Single machine scheduling problems under the effects of nonlinear deterioration and time-dependent learning, Math. comput. Model. 50, 401-406 (2009) · Zbl 1185.90097 · doi:10.1016/j.mcm.2009.05.026
[25]Wang, J. -B.; Huang, X.; Wang, X. -Y.; Yin, N.; Wang, L. -Y.: Learning effect and deteriorating jobs in the single machine scheduling problems, Appl. math. Model. 33, 3848-3853 (2009) · Zbl 1205.90137 · doi:10.1016/j.apm.2009.01.004
[26]Huang, X.; Wang, J. -B.; Wang, L. -Y.; Gao, W. -J.; Wang, X. -R.: Single machine scheduling with time-dependent deterioration and exponential learning effect, Comput. indus. Eng. 58, 58-63 (2010)
[27]Sun, L.: Single-machine scheduling problems with deteriorating jobs and learning effects, Comput. indus. Eng. 57, 843-846 (2009)
[28]Wang, J. -B.: Single machine scheduling with learning effect and deteriorating jobs, Comput. indus. Eng. 57, 1452-1456 (2009)
[29]Yang, S. -J.; Yang, D. -L.: Single-machine group scheduling problems under the effects of deterioration and learning, Comput. indus. Eng. 58, 754-758 (2010)
[30]Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G. Rinnooy: Optimization and approximation in deterministic sequencing and scheduling: a survey, Ann. discrete math. 5, 287-326 (1979) · Zbl 0411.90044