zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear dynamics in a heterogeneous duopoly game with adjusting players and diseconomies of scale. (English) Zbl 1221.91037
Summary: A repeated, discrete time, heterogeneous Cournot duopoly game with bounded rational and adaptive players adjusting the quantities of production is subject of investigation. Linear inverse demand function and quadratic cost functions reflecting decreasing returns to scale are assumed. The game is modeled with a system of two difference equations. Evolution of outputs over time is obtained by iteration of a two dimensional nonlinear map. Existing equilibria and their stability are analyzed. In face of diseconomies of scale, bounded rational and adaptive duopolists are shown to experience a decrease in the latitude of their output adjustment decisions with respect to the market stability compared to constant returns to scale and ceteris paribus. Chaotic dynamics is confirmed to depend mainly on the adjustment behavior of the bounded rational player, who if overshoots leaves the adaptive player with limited opportunities to stabilize the market again, hence industries facing diseconomies of scale are found to be less stable than those with constant marginal costs. Complexity of the dynamical system is examined by means of numerical simulations, where the paper extends the results of other authors who considered analogous games assuming linear cost functions. Intermittent transition to chaos and attractor merging crisis are shown among others.
91B55Economic dynamics
37N40Dynamical systems in optimization and economics
39A33Complex (chaotic) behavior of solutions (difference equations)
39A60Applications of difference equations
91A20Multistage and repeated games
91B54Special types of economies
[1]Agiza, H. N.: Explicit stability zones for cournot games with 3 and 4 competitors, Chaos solitons fract 9, 1955-1966 (1998) · Zbl 0952.91003 · doi:10.1016/S0960-0779(98)00006-X
[2]Agiza, H. N.: On the stability, bifurcations, chaos and chaos control of kopel map, Chaos solitons fract 11, 1909-1916 (1999) · Zbl 0955.37022 · doi:10.1016/S0960-0779(98)00210-0
[3]Agiza, H. N.; Elsadany, A. A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players, Appl math comput 149, 843-860 (2004) · Zbl 1064.91027 · doi:10.1016/S0096-3003(03)00190-5
[4]Agiza, H. N.; Elsadany, A. A.: Nonlinear dynamics in the cournot duopoly game with heterogeneous players, Physica A 320, 512-524 (2003) · Zbl 1010.91006 · doi:10.1016/S0378-4371(02)01648-5
[5]Agiza, H. N.; Hegazi, A. S.; Elsadany, A. A.: Complex dynamics and synchronization of duopoly game with bounded rationality, Math comput simulat 58, 133-146 (2002) · Zbl 1002.91010 · doi:10.1016/S0378-4754(01)00347-0
[6]Agiza, H. N.; Hegazi, A. S.; Elsadany, A. A.: The dynamics of bowley’s model with bounded rationality, Chaos solitons fract 9, 1705-1717 (2001) · Zbl 1036.91004 · doi:10.1016/S0960-0779(00)00021-7
[7]Bischi, G. I.; Galletgatti, M.; Naimzada, A.: Symmetry-breaking bifurcations and representative firm in dynamic duopoly games, Ann oper res 99, 253-272 (1999) · Zbl 0939.91017 · doi:10.1023/A:1018931824853
[8]Bischi, G. I.; Kopel, M.: Equilibrium selection in a nonlinear duopoly game with adaptive expectations, J econom behav org 46, 73-100 (2001)
[9]Bischi, G. I.; Lamantia, F.: Coexisting attractors and complex basins in discrete-time economics models, Nonlinear dynamical systems in economics, 187-231 (2005)
[10]Bischi, G. I.; Lamantia, F.: Nonlinear duopoly games with positive cost externalities due to spillover effects, Chaos solitons fract 13, 805-822 (2002) · Zbl 1052.91008 · doi:10.1016/S0960-0779(01)00006-6
[11]Bischi GI, Lamantia F, Sbragia L. Competition and cooperation in natural resources exploitation: an evolutionary game approach. In: Cararro C, Fragnelli V, editors. Game practice and the environment. Cheltenham:Edward Elgar; 2004. p. 187 – 211.
[12]Bischi, G. I.; Naimzada, A.: Global analysis of a dynamic duopoly game with bounded rationality, Advances in dynamic games and applications 5, 361-385 (2000) · Zbl 0957.91027
[13]Bischi, G. I.; Stefanini, L.; Gardini, L.: Synchronization, intermittency and critical curves in a duopoly game, Math comput simulat 44, 559-585 (1998) · Zbl 1017.91500 · doi:10.1016/S0378-4754(97)00100-6
[14]Chian, A. C. L.; Borotto, F. A.; Rempel, E. L.; Rogers, C.: Attractor merging crisis in chaotic business cycles, Chaos solitons fract 24, 869-875 (2005) · Zbl 1081.37058 · doi:10.1016/j.chaos.2004.09.080
[15]Chian, A. C. L.; Rempel, E. L.; Rogers, C.: Complex economic dynamics: chaotic saddle, crisis and intermittency, Chaos solitons fract 29, 1194-1218 (2006) · Zbl 1142.91652 · doi:10.1016/j.chaos.2005.08.218
[16]Chian, A. C. L.; Rempel, E. L.; Rogers, C.: Crisis-induced intermittency in non-linear economic cycles, Appl econom lett 14, 211-218 (2007)
[17]Cournot, A.: Researches into the mathematical principles of the theory of wealth, (1963)
[18]Dana, R. A.; Montrucchio, L.: Dynamic complexity in duopoly games, J econom theory 40, 40-56 (1986) · Zbl 0617.90104 · doi:10.1016/0022-0531(86)90006-2
[19]Den Haan, W. J.: The importance of the number of different agents in a heterogeneous asset-pricing model, J econom dynam control 25, 721-746 (2001) · Zbl 0963.91051 · doi:10.1016/S0165-1889(00)00038-5
[20]Dixit, A.: Comparative statics for oligopoly, Int econom rev 27, 107-122 (1986) · Zbl 0584.90012 · doi:10.2307/2526609
[21]Fischer, F. M.: The stability of the cournot oligopoly solution: the effect of speeds of adjustment and increasing marginal costs, Rev econom studies 28, 125-135 (1961)
[22]Gandolfo, G.: Economic dynamics, (1997)
[23]Gao, Y.: Complex dynamics in a two dimensional noninvertible map, Chaos solitons fract 39, 1798-1810 (2009) · Zbl 1197.37057 · doi:10.1016/j.chaos.2007.06.051
[24]Kaplan, J. L.; Yorke, Y. A.: A regime observed in a fluid flow model of Lorenz, Commun math phys 67, 93-108 (1979) · Zbl 0443.76059 · doi:10.1007/BF01221359
[25]Kopel, M.: Simple and complex adjustment dynamics in cournot duopoly models, Chaos solitons fract 12, 2031-2048 (1996) · Zbl 1080.91541 · doi:10.1016/S0960-0779(96)00070-7
[26]Leonard, D.; Nishimura, K.: Nonlinear dynamics in the cournot model without full information, Ann oper res 89, 165-173 (1999) · Zbl 0939.91096 · doi:10.1023/A:1018919522127
[27]Medio, A.; Gallo, G.: Chaotic dynamics: theory and applications to economics, (1995)
[28]Medio, A.; Lines, M.: Introductory notes on the dynamics of linear and linearized systems, Nonlinear dynamical systems in economics, 1-26 (2005) · Zbl 1132.93327
[29]Medio, A.; Lines, M.: Nonlinear dynamics. A primer, (2001)
[30]Onazaki, T.; Sieg, G.; Yokoo, M.: Stability, chaos and multiple attractors: a single agent makes a difference, J econom dynam control 27, 1917-1938 (2003) · Zbl 1178.91105 · doi:10.1016/S0165-1889(02)00090-8
[31]Ott, E.: Chaos w ukladach dynamicznych, (1997)
[32]Pomeau, Y.; Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems, Commun math phys 74, 187-197 (1980)
[33]Puu, T.: Chaos in duopoly pricing, Chaos solitons fract 1, 573-581 (1991)
[34]Puu, T.: Complex oligopoly dynamics, Nonlinear dynamical systems in economics, 165-186 (2005)
[35]Puu, T.: The chaotic duopolists revisited, J econom behav org 37, 385-394 (1998)
[36]Rassenti, S.; Reynolds, S. S.; Smith, V. L.; Szidarovszky, F.: Adaptation and convergence of behavior in repeated experimental cournot games, J econom behav org 41, 117-146 (2000)
[37]Tramontana, F.: Heterogeneous duopoly with isoelastic demand function, Econom modelling 27, 350-357 (2010)
[38]Zhang, J.; Da, Q.; Wang, Y.: Analysis of nonlinear duopoly game with heterogeneous players, Econom modelling 24, 138-148 (2007)