zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the modelling of genetic mutations and immune system competition. (English) Zbl 1221.92062
Summary: This paper deals with the modelling of genetic mutations, which occur in almost all cells of a living system. The mutated cells display different stages of cancer progression and are contrasted by the action of the immune system cells. This investigation can be of interest in the evolutionary dynamics of cellular systems since the selective pressure on the mutated cells exerted by the immune system is analyzed. The proposed mathematical model is developed by means of the tools of the kinetic theory of active particles. Numerical simulations, obtained considering different values of the parameters in the model, show different emerging behaviors that are typical of the cancer-immune system competition.
92D15Problems related to evolution
92C50Medical applications of mathematical biology
37N25Dynamical systems in biology
65C20Models (numerical methods)
[1]Watson, J. D.; Crick, F. H.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature 171, 737-738 (1953)
[2]Hanahan, D.; Weinberg, R. A.: The hallmarks of cancer, Cell 100, 57-70 (2000)
[3]Cristini, V.; Lowengrub, J.: Multiscale modeling of cancer. An integrated experimental and mathematical modeling approach, (2010)
[4]Bellomo, N.; Delitala, M.: From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Physics of life reviews 5, 183-206 (2008)
[5]Bellomo, N.; Li, N. K.; Maini, P. K.: On the foundations of cancer modelling: selected topics, speculations, perspectives, Math. models methods appl. Sci. 18, 593-646 (2008) · Zbl 1151.92014 · doi:10.1142/S0218202508002796
[6]Martins, M. L.; Jr., S. C. Ferreira; Vilela, M. J.: Multiscale models for the growth of avascular tumors, Physics of life reviews 4, 128-156 (2007)
[7]Bellomo, N.; Bianca, C.; Delitala, M.: Complexity analysis and mathematical tools towards the modelling of living systems, Physics of life reviews 6, 144-175 (2009)
[8]Schweitzer, F.: Brownian agents and active particles, (2003)
[9]Bellomo, N.; Forni, G.: Complex multicellular systems and immune competition: new paradigms looking for a mathematical theory, Current topics in developmental biology 81, 485-502 (2008)
[10]Reed, R.: Why is mathematical biology so hard?, Notices amer. Math. soc. 51, 338-342 (2004) · Zbl 1168.92303 · doi:http://www.ams.org/notices/200403/200403-toc.html
[11]Hartwell, H. L.; Hopfield, J. J.; Leibner, S.; Murray, A. W.: From molecular to modular cell biology, Nature 402, c47-c52 (1999)
[12]Nowak, M.: Evolutionary dynamics: exploring the equations of life, (2006)
[13]Bellomo, N.; Preziosi, L.; Forni, G.: On a kinetic (cellular) theory for competition between tumors and the host immune system, J. biological systems 4, 479-502 (1996)
[14]Bellouquid, A.; Delitala, M.: Mathematical modeling of complex biological systems: A kinetic theory approach, (2006)
[15]Arlotti, L.; Gamba, A.; Lachowicz, M.: A kinetic model of tumor/immune system cellular interactions, J. theoret. Med. 4, 39-50 (2002) · Zbl 1050.92027 · doi:10.1080/10273660290015170
[16]Bellouquid, A.; Delitala, M.: Mathematical models and tools of kinetic theory toward modelling complex biological systems, Math. models methods appl. Sci. 15, 1639-1666 (2005) · Zbl 1093.82016 · doi:10.1142/S0218202505000923
[17]Kolev, M.: Mathematical modeling of the competition between acquired immunity and cancer, Int. J. Appl. math. Comput. sci. 13, 289-296 (2003) · Zbl 1035.92021
[18]Kolev, M.: Mathematical modelling of the competition between tumors and immune system considering the role of antibodies, Math. comput. Modelling 37, 1143-1152 (2003) · Zbl 1043.92013 · doi:10.1016/S0895-7177(03)80018-3
[19]Kolev, M.; Kozlowska, E.; Lachowicz, M.: A mathematical model for single cell cancer – immune system dynamics, Math. comput. Modelling 41, 1083-1095 (2005) · Zbl 1085.92019 · doi:10.1016/j.mcm.2005.05.004
[20]De Angelis, E.; Jabin, P. E.: Qualitative analysis of a mean field model of tumor-immune system competition, Math. models methods appl. Sci. 13, 187-206 (2003) · Zbl 1043.92012 · doi:10.1142/S0218202503002453
[21]De Angelis, E.; Jabin, P. E.: Mathematical models of therapeutical actions related to tumour and immune system competition, Math. methods appl. Sci. 28, 2061-2083 (2005) · Zbl 1078.92031 · doi:10.1002/mma.656
[22]Greller, L. D.; Tobin, F. L.; Poste, G.: Tumor heterogeneity and progression: conceptual foundations for modeling, Invasion metastasis 16, 177-208 (1996)
[23]Nowell, P. C.: Tumor progression: a brief historical perspective, Seminars in cancer biology 12, 261-266 (2002)
[24]De Pillis, L. G.; Gu, W.; Radunskaya, A. E.: Mixed immunotherapy and chemotherapy of tumors: modeling applications and biological interpretations, J. theoret. Biol. 238, 841-862 (2006)
[25]D’onofrio, A.: Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy, Math. models methods appl. Sci. 16, 1375-1401 (2006) · Zbl 1094.92040 · doi:10.1142/S0218202506001571
[26]Dunn, G. P.; Bruce, A. Y.; Ikeda, H.; Old, L. J.; Schreiber, R. D.: Cancer immunoediting: from immunosurveillance to tumor escape, Nature immunology 3, 991-998 (2002)
[27]Friendl, P.; De Boer, A. T.; Gunzer, M.: Tuning immune responses: diversity and adaptation of the immunological synapse, Nature reviews immunology 5, 532-545 (2005)
[28]Chaplain, M. A. J.: Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation, Lecture notes in mathematics, 147-200 (2008)
[29]Lollini, P. L.; Motta, S.; Pappalardo, F.: Modelling tumor immunology, Math. models methods appl. Sci. 16, 1091-1124 (2006) · Zbl 1099.92036 · doi:10.1142/S0218202506001479
[30]Gatenby, R. A.; Gillies, R. J.; Brown, J. S.: The evolutionary dynamics of cancer prevention, Nature reviews cancer 10, 526-527 (2010)
[31]Anderson, A. R.; Weaver, A. M.; Cummings, P. T.; Quaranta, V.: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell 127, 905-915 (2006)
[32]De Lillo, S.; Delitala, M.; Salvatori, M. C.: Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. models methods appl. Sci. 19, 1405-1425 (2009) · Zbl 1175.92035 · doi:10.1142/S0218202509003838
[33]Bianca, C.: Mathematical modelling for keloid formation triggered by virus: malignant effects and immune system competition, Math. models methods appl. Sci. 21 (2011) · Zbl 1218.35236 · doi:10.1142/S021820251100509X
[34]Weinberg, R. A.: The biology of cancer, (2007)
[35]Bianca, C.: On the modelling of space dynamics in the kinetic theory for active particles, Math. comput. Modelling 51, 72-83 (2010) · Zbl 1190.82032 · doi:10.1016/j.mcm.2009.08.044
[36]Thompson, E. W.; Newgreen, D. F.: Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition?, Cancer res. 65, 5991-5995 (2005)
[37]Lund, L.; Bowers, K. L.: Sinc methods for quadrature and differential equations, (1987)
[38]Bellomo, N.; Ridolfi, L.: Solution of nonlinear initial-boundary value problems by sinc collocation-interpolation methods, Comput. math. Appl. 29, 15-28 (1995) · Zbl 0822.65075 · doi:10.1016/0898-1221(94)00234-C
[39]Bellomo, N.; Delitala, M.: On the coupling of higher and lower scales using the mathematical kinetic theory of active particles, Appl. math. Lett. 22, 646-650 (2009) · Zbl 1162.92013 · doi:10.1016/j.aml.2008.05.005
[40]Gabetta, E.; Ragazzini, E.: About the gene families size diustribution in a recent model of genome evolution, Math. models methods appl. Sci. 20, 1005-1020 (2010) · Zbl 1191.92031 · doi:10.1142/S0218202510004519
[41]Paulsson, J.: Models of stochastic gene expression, Physics of life reviews 2, 157-175 (2005)
[42]Tiuryn, J.; Wojtowicz, D.; Rudnicki, R.: A discrete model of evolution of small paralog families, Math. models methods appl. Sci. 17, 933-955 (2007) · Zbl 1114.92052 · doi:10.1142/S0218202507002169
[43]Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. models methods appl. Sci. 20, 1179-1207 (2010)