zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive full-order and reduced-order observers for the Lur’e differential inclusion system. (English) Zbl 1221.93036
Summary: This paper deals with the observer design for the Lur’e differential inclusion system with unknown parameters. The set-valued mapping in the differential inclusion is upper semi-continuous, closed, convex, bounded and monotone. First, under some assumptions an adaptive full-order observer is designed for the system. Then, under the same assumptions, a reduced-order observer is proved to exist. An example is provided to show the validation of the designed observers.
MSC:
93B07Observability
34A55Inverse problems of ODE
34A60Differential inclusions
References:
[1]Lur’e A. Some Nonlinear Problem in the Theory of Automatic Control. Her Majesty’s Stationary Office. London; 1957.
[2]Nijmeijer, H.: A dynamical control view on synchronization, Physica D: Nonlinear phenomena 154, No. 3 – 4, 219-228 (2001) · Zbl 0981.34053 · doi:10.1016/S0167-2789(01)00251-2
[3]He, Y.; Wu, M.: Absolute stability for multiple delay general Lur’e control systems with multiple nonlinearities, J comput appl math 159, No. 2, 241-248 (2003) · Zbl 1032.93062 · doi:10.1016/S0377-0427(03)00457-6
[4]Han, Q.; Xue, A.; Liu, S.; Yu, X.: Robust absolute stability criteria for uncertain Lur’e systems of neutral type, Int J robust nonlinear control 18, No. 3, 278-295 (2008)
[5]Li, T.; Yu, J.; Wang, Z.: Delay-range-dependent synchronization criterion for Lur’e systems with delay feedback control, Commun nonlinear sci numer simul 14, No. 5, 1796-1803 (2009) · Zbl 1221.93224 · doi:10.1016/j.cnsns.2008.06.018
[6]Osorio M, Moreno J. Dissipative design of observers for multivalued nonlinear systems. In: Proc 45th IEEE Conf Decision Control; 2006.
[7]Doris, A.; Aleksandar; Juloski, L.; Mihajlovic, N.; Heemels, W.; Wouw, N.: Observer designs for experimental non-smooth and discontinuous systems, IEEE trans control syst technol 16, No. 6, 1323-1332 (2008)
[8]Bruin, J.; Doris, A.; Wouw, N.; Heemels, W.; Nijmeijer, H.: Control of mechanical motion systems with non-collocation of actuation and friction: a Popov criterion approach for input-to-state stability and set-valued nonlinearities, Automatica 45, No. 2, 405-415 (2009) · Zbl 1158.93400 · doi:10.1016/j.automatica.2008.09.008
[9]Brogliato, B.; Heemels, W.: Observer design for Lur’e systems with multivalued mappings: a passivity approach, IEEE trans automat control 54, No. 8, 1996-2001 (2009)
[10]Leine, R.; Nijmeijer, H.: Dynamics and bifurcations in non-smooth mechanical systems, (2004)
[11]Addi, K.; Adly, S.; Brogliato, B.; Goeleven, D.: A method using the approach of moreau and panagiotopoulos for the mathematical formulation of non-regular circuits in electronics, Nonlinear anal: hybrid syst 1, No. 1, 30-43 (2007) · Zbl 1172.94650 · doi:10.1016/j.nahs.2006.04.001
[12]Liu, X.; Cao, J.: On periodic solutions of neural networks via differential inclusions, Neural networks 22, No. 4, 329-334 (2009)
[13]Cho, Y.; Rajamani, R.: A systematic approach to adaptive observer synthesis for nonlinear systems, IEEE trans automat control 42, No. 4, 534-537 (1997) · Zbl 0873.93049 · doi:10.1109/9.566664
[14]Jiang, B.; Staroswiecki, M.; Cocquempot, V.: Fault diagnosis based on adaptive observer for a class of non-linear systems with unknown parameters, Int J control 77, No. 4, 367-383 (2004) · Zbl 1098.93013 · doi:10.1080/00207170410001669673
[15]Zhu, F.: Full-order and reduced-order observer-based synchronization for chaotic systems with unknown disturbances and parameters, Phys lett A 372, No. 3, 223-232 (2008) · Zbl 1217.37038 · doi:10.1016/j.physleta.2007.06.081
[16]Chen, C.: Linear system theory and design, (1984)
[17]Aubin, J.; Cellina, A.: Differential inclusions: set-valued maps and viability theory, (1984)
[18]Royden, H.: Real analysis, (1988) · Zbl 0704.26006
[19]Kristic, M.; Modestino, J.; Deng, H.: Stabilization of nonlinear uncertain systems, (1998)
[20]Brogliato, B.; Lozano, R.; Maschke, B.; Egeland, O.: Dissipative systems analysis and control, (2007)