zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An adaptive sliding mode control scheme for a class of chaotic systems with mismatched perturbations and input nonlinearities. (English) Zbl 1221.93050
Summary: We are concerned with the stabilization problem for a class of chaotic systems with mismatched perturbations and input nonlinearities. A novel sliding surface is specially designed so that when the system enters the sliding mode, the mismatched perturbations can be effectively overcome and achieve asymptotic stability. Then, an adaptive sliding mode controller (ASMC) is proposed to drive the controlled state trajectories into the designated sliding surface in finite time even subjected to input nonlinearities. Finally, the corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.
MSC:
93B12Variable structure systems
34H10Chaos control (ODE)
34C28Complex behavior, chaotic systems (ODE)
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
References:
[1]Ogorzalek, M. J.: Chaos and complexity in nonlinear electronic circuits, (1997)
[2]Yan, J. J.: Controlling chaos of a chaotic nonlinear gyro using variable structure control, Mech syst signal process 21, 2515-2522 (2006)
[3]Chen, G.; Dong, X.: From chaos to order: methodologies, perspective and applications, (1998)
[4]Chen, M.; Zhou, D.; Shang, Y.: A new observer-based synchronization scheme for private communication, Chaos, soliton & fractals 24, 1025-1030 (2005) · Zbl 1069.94508 · doi:10.1016/j.chaos.2004.09.096
[5]Wang, H.: Finite-time chaos control via nonsingular terminal sliding mode control, Commun nonlinear sci numer simulat 14, 2728-2733 (2009) · Zbl 1221.37225 · doi:10.1016/j.cnsns.2008.08.013
[6]Du, J. G.; Huang, T. W.; Sheng, Z. H.: Analysis of decision-making in economic chaos control, Nonlinear anal real world appl 10, 2493-2501 (2009) · Zbl 1163.91331 · doi:10.1016/j.nonrwa.2008.05.007
[7]Cheng, C. C.; Wen, C. C.; Lee, W. T.: Design of decentralised sliding surfaces for a class of large-scale systems with mismatched perturbations, Int J control 82, 2013-2025 (2009) · Zbl 1175.93007 · doi:10.1080/00207170902866138
[8]Chou, C. H.; Cheng, C. C.: A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems, IEEE trans automat control 32, 1786-1790 (2007)
[9]Huang, C. F.; Cheng, K. H.; Yan, J. J.: Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties, Commun nonlinear sci numer simulat 14, 2784-2792 (2009)
[10]Wang, Y. Q.; Jiang, C. H.; Zhou, D. H.; Gao, F. R.: Variable structure control for a class of nonlinear systems with mismatched uncertainties, Appl math comput 200, 387-400 (2008) · Zbl 1146.93014 · doi:10.1016/j.amc.2007.11.018
[11]Choi, H. H.: Variable structure output feedback control design for a class of uncertain dynamic systems, Automatica 38, 335-341 (2002) · Zbl 0991.93021 · doi:10.1016/S0005-1098(01)00211-4
[12]Wang, H.; Han, Z. Z.; Xie, Q. Y.; Zhang, W.: Sliding mode control for chaotic systems based on LMI, Commun nonlinear sci numer simulat 14, 1410-1417 (2009) · Zbl 1221.93049 · doi:10.1016/j.cnsns.2007.12.006
[13]Wen, C. C.; Cheng, C. C.: Design of sliding surface for mismatched uncertain systems to achieve asymptotical stability, J franklin inst 345, 926-941 (2008) · Zbl 1201.93108 · doi:10.1016/j.jfranklin.2008.06.003
[14]Leon, S. J.: Linear algebra with applications, (1999)
[15]Tao, G.: Adaptive control design and analysis, (2003)
[16]Corradini, M. L.; Orlando, G.: Linear unstable plants with saturating actuators: robust stabilization by a time varying sliding surface, Automatica 43, 88-94 (2007) · Zbl 1140.93467 · doi:10.1016/j.automatica.2006.07.018