zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Projective and lag synchronization of a novel hyperchaotic system via impulsive control. (English) Zbl 1221.93104
Summary: Recently, Q. Yang, K. Zhang and G. Chen [Nonlinear Anal., Real World Appl. 10, No. 3, 1601–1617 (2009; Zbl 1175.37041)] proposed a novel hyperchaotic system. This paper studies the projective and lag synchronization of this novel hyperchaotic system using an impulsive control technique. Some sufficient conditions of projective and lag synchronization of such new system are derived from strict mathematical theories. Numerical examples are worked through for illustrating the main results.
93C15Control systems governed by ODE
34A37Differential equations with impulses
34C28Complex behavior, chaotic systems (ODE)
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
93D15Stabilization of systems by feedback
[1]Pecora, L.; Carroll, T.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990)
[2]Chua, L.; Itoh, M.; Kocarev, L.; Eckert, K.: Chaos synchronization in Chua’s circuit, J circuits syst comput 3, 93-108 (1993)
[3]Chua, L.; Yang, T.; Zhong, G.; Wu, C.: Adaptive synchronization of Chua’s oscillators, Int J bifurcation chaos 6, 189-201 (1996)
[4]Chen, G.; Dong, X.: From chaos to order: perspectives, methodologies and applications, (1998)
[5]Wang, G.; Yu, X.; Chen, S.: Chaos control, synchronization and its applications, (2001)
[6]Wang, Q.; Perc, M.; Duan, Z.; Chen, G.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys rev E 80, 026206 (2009)
[7]Wang, Q.; Perc, M.; Duan, Z.; Chen, G.: Delay-induced multiple stochastic resonances on scale-free neuronal networks, Chaos 19, 023112 (2009)
[8]Wang, Q.; Duan, Z.; Perc, M.; Chen, G.: Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability, Epl 83, 50008 (2008)
[9]Perc, M.; Marhl, M.: Local dissipation and coupling properties of cellular oscillators: a case study on calcium oscillations, Bioelectrochemistry 62, 1-10 (2004)
[10]Perc, M.; Marhl, M.: Synchronization of regular and chaotic oscillations: the role of local divergence and the slow passage effect, Int J bifurcation chaos 14, 2735-2751 (2004) · Zbl 1065.92015 · doi:10.1142/S0218127404010849
[11]Perc, M.: Optimal spatial synchronization on scale-free networks via noisy chemical synapses, Biophys chem 141, 175-179 (2009)
[12]Perc, M.: Stochastic resonance on weakly paced scale-free networks, Phys rev E 78, 036105 (2008)
[13]Perc, M.; Gosak, M.: Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators, New J phys 10, 053008 (2008)
[14]Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker, Phys rev E 76, 066203 (2007)
[15]Gosak, M.; Perc, M.: Proximity to periodic windows in bifurcation diagrams as a gateway to coherence resonance in chaotic systems, Phys rev E 76, 037201 (2007)
[16]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys rev lett 78, 4193-4196 (1997)
[17]Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Abarbanel, H. D. I.: Generalized synchronization of chaos in directionally coupled chaotic systems, Phys rev E 51, 980-994 (1995)
[18]Wang, Y.; Guan, Z. H.: Generalized synchronization of continuous chaotic system, Chaos, solitons fractals 27, 97-101 (2006) · Zbl 1083.37515 · doi:10.1016/j.chaos.2004.12.038
[19]Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems, Phys rev lett 82, 3042-3045 (1999)
[20]Hu, M.; Yang, Y.; Xu, Z.: Impulsive control of projective synchronization in chaotic systems, Phys lett A 372, 3228-3233 (2008) · Zbl 1220.34079 · doi:10.1016/j.physleta.2008.01.054
[21]Lu, J.: Generalized (complete,lag,anticipated) synchronization of discrete-time chaotic systems, Commun nonlinear sci numer simul 13, 1851-1859 (2008) · Zbl 1221.37216 · doi:10.1016/j.cnsns.2007.04.022
[22]Rössler, O.: Continuous chaos-four prototype equations, Ann NY acad sci 316, 376-392 (1979) · Zbl 0437.76055
[23]Li, Y.; Tang, W. K. S.; Chen, G.: Generating hyperchaos via state feedback control, Int J bifurcation chaos 15, 3367-3375 (2005)
[24]Chen, A.; Lu, J.; Lü, J.; Yu, S.: Generating hyperchaotic Lü attractor via state feedback control, Physica A 364, 103-110 (2006)
[25]Yang, Q.; Zhang, K.; Chen, G.: Hyperchaotic attractors from a linearly controlled Lorenz system, Nonlinear anal: real world appl 10, 1601-1617 (2009) · Zbl 1175.37041 · doi:10.1016/j.nonrwa.2008.02.008
[26]Li, C.; Liao, X.; Zhang, X.: Impulsive synchronization of chaotic systems, Chaos 15, 023104 (2005) · Zbl 1080.37034 · doi:10.1063/1.1899823
[27]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, Series in modern applied mathematics (1989) · Zbl 0718.34011
[28]Ruan, J.; Lin, W.: Chaos in a class of impulsive differential equation, Commun nonlinear sci numer simul 4, 165-169 (1999) · Zbl 0924.35186 · doi:10.1016/S1007-5704(99)90033-3
[29]Khadra, A.; Liu, X.; Shen, X.: Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica 41, 1491-1502 (2005) · Zbl 1086.93051 · doi:10.1016/j.automatica.2005.04.012
[30]Yang, T.: Impulsive control, IEEE trans autom control 41, 1081-1083 (1999) · Zbl 0954.49022 · doi:10.1109/9.763234