zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust adaptive anti-synchronization of two different hyperchaotic systems with external uncertainties. (English) Zbl 1221.93126
Summary: A novel robust control scheme is proposed to realize anti-synchronization of two different hyperchaotic systems with external uncertainties. By introducing a compensator, the novel robust control scheme is developed based on nonlinear control and adaptive control, which can eliminate the influence of uncertainties effectively and achieve adaptive anti-synchronization of the two different hyperchaotic systems globally and asymptotically with an arbitrarily small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions are derived as well. Finally, numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.
MSC:
93C40Adaptive control systems
37D45Strange attractors, chaotic dynamics
34C28Complex behavior, chaotic systems (ODE)
37N35Dynamical systems in control
References:
[1]Chen, G.; Dong, X.: From chaos to order, (1998)
[2]Feki, M.: An adaptive chaos synchronization scheme applied to secure communication, Chaos solitons fractals 3, 959-964 (2003)
[3]Li, G. H.; Zhou, S. P.: Anti-synchronization in different chaotic systems, Chaos solitons fractals 32, 516-520 (2007)
[4]Li, W.; Chen, X.; Shen, Z.: Anti-synchronization of two different chaotic systems, Physica A 387, 3747-3750 (2008)
[5]Al-Sawalha, M. M.; Noorani, M. S. M.: On anti-synchronization of chaotic systems via nonlinear control, Chaos solitons fractals 42, 170-179 (2009) · Zbl 1198.93145 · doi:10.1016/j.chaos.2008.11.011
[6]Li, C.; Liao, X.: Anti-synchronization of a class of coupled chaotic systems via linear feedback control, Int J bifur chaos 16, 1041-1047 (2006) · Zbl 1097.94037 · doi:10.1142/S0218127406015295
[7]Ahn, C. K.: An H approach to anti-synchronization for chaotic systems, Phys lett A 373, 1729-1733 (2009) · Zbl 1229.34078 · doi:10.1016/j.physleta.2009.03.032
[8]Elabbasy, E. M.; Ei-Dessoky, M. M.: Adaptive anti-synchronization of different chaotic dynamical systems, Chaos solitons fractals 42, 2174-2180 (2009) · Zbl 1198.93013 · doi:10.1016/j.chaos.2009.03.159
[9]Hu, J.; Chen, S.; Chen, L.: Adaptive control for anti-synchronization of Chua’s chaotic system, Phys lett A 339, 455-460 (2005) · Zbl 1145.93366 · doi:10.1016/j.physleta.2005.04.002
[10]Al-Sawalha, M. M.; Noorani, M. S. M.: Anti-synchronization of chaotic systems with uncertain parameters via adaptive control, Phys lett A 373, 2852-2857 (2009) · Zbl 1233.93056 · doi:10.1016/j.physleta.2009.06.008
[11]Chiang, T. Y.; Lin, J. S.; Liao, T. L.; Yan, J. J.: Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity, Nonlinear analysis 68, 2629-2637 (2008) · Zbl 1141.34030 · doi:10.1016/j.na.2007.02.009
[12]Al-Sawalha, M. M.; Noorani, M. S. M.: Anti-synchronization of two hyperchaotic systems via nonlinear control, Commun nonlinear sci numer simulat 14, 3402-3411 (2009) · Zbl 1221.37210 · doi:10.1016/j.cnsns.2008.12.021
[13]Wang, Z.: Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters, Commun nonlinear sci numer simulat 14, 2366-2372 (2009)
[14]Ei-Dessoky, M. M.: Synchronization and anti-synchronization of a hyperchaotic Chen system, Chaos soliton fractals 39, 1790-1797 (2009) · Zbl 1197.37026 · doi:10.1016/j.chaos.2007.06.053
[15]Ei-Dessoky, M. M.: Anti-synchronization of four scroll attractor with fully unknown parameters, Nonlinear anal-real 11, 778-783 (2010) · Zbl 1181.37040 · doi:10.1016/j.nonrwa.2009.01.048
[16]Al-Sawalha, M. M.; Noorani, M. S. M.: Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters, Commun nonlinear sci numer simulat 15, 1036-1047 (2010) · Zbl 1221.93123 · doi:10.1016/j.cnsns.2009.05.037
[17]Wang, X. Y.; Wang, M.: A hyperchaos generated from Lorenz system, Physica A 387, 3751-3758 (2008)
[18]Zheng, S.; Dong, G.; Bi, Q.: A new hyperchaotic system and its synchronization, Appl math comput 215, 3192-3200 (2010) · Zbl 1188.34051 · doi:10.1016/j.amc.2009.09.060