zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. (English) Zbl 1221.93131
Summary: A robust adaptive sliding mode controller (RASMC) is proposed to realize chaos synchronization between two different chaotic systems with uncertainties, external disturbances and fully unknown parameters. It is assumed that both master and slave chaotic systems are perturbed by uncertainties, external disturbances and unknown parameters. The bounds of the uncertainties and external disturbances are assumed to be unknown in advance. Suitable update laws are designed to tackle the uncertainties, external disturbances and unknown parameters. For constructing the RASMC a simple sliding surface is first designed. Then, the RASMC is derived to guarantee the occurrence of the sliding motion. The robustness and stability of the proposed RASMC is proved using Lyapunov stability theory. Finally, the introduced RASMC is applied to achieve chaos synchronization between three different pairs of the chaotic systems (Lorenz–Chen, Chen–Lorenz, and Liu–Lorenz) in the presence of the uncertainties, external disturbances and unknown parameters. Some numerical simulations are given to demonstrate the robustness and efficiency of the proposed RASMC.
MSC:
93C40Adaptive control systems
34D06Synchronization
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
93B12Variable structure systems
93D20Asymptotic stability of control systems
References:
[1]Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications, (1998)
[2]Nayfeh, A. H.: Applied nonlinear dynamics, (1995)
[3]Kapitaniak, T.: Chaotic oscillations in mechanical systems, (1991) · Zbl 0786.58027
[4]Wang, H.; Han, Z.; Xie, Q.; Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control, Commun nonlinear sci numer simulat 14, 2728-2733 (2009) · Zbl 1221.37225 · doi:10.1016/j.cnsns.2008.08.013
[5]Xiang, W.; Huangpu, Y.: Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties, Commun nonlinear sci numer simulat 15, 3241-3247 (2010) · Zbl 1222.93045 · doi:10.1016/j.cnsns.2009.12.012
[6]Wang, H.; Han, Z.; Xie, Q.; Zhang, W.: Sliding mode control for chaotic systems based on LMI, Commun nonlinear sci numer simulat 14, 1410-1417 (2009) · Zbl 1221.93049 · doi:10.1016/j.cnsns.2007.12.006
[7]Fuh, C.: Optimal control of chaotic systems with input saturation using an input-state linearization scheme, Commun nonlinear sci numer simulat 14, 3424-3431 (2009)
[8]Grzybowski, J. M. V.; Rafikov, M.; Balthazar, J. M.: Synchronization of the unified chaotic system and application in secure communication, Commun nonlinear sci numer simulat 14, 2793-2806 (2009) · Zbl 1221.94047 · doi:10.1016/j.cnsns.2008.09.028
[9]Rafikov, M.; Balthazar, J. M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Commun nonlinear sci numer simulat 13, 1246-1255 (2008) · Zbl 1221.93230 · doi:10.1016/j.cnsns.2006.12.011
[10]Bowong, S.: Adaptive synchronization between two different chaotic dynamical systems, Commun nonlinear sci numer simulat 12, 976-985 (2007) · Zbl 1115.37030 · doi:10.1016/j.cnsns.2005.10.003
[11]Lazzouni, S. A.; Bowong, S.; Kakmeni, F. M. M.; Cherki, B.: An adaptive feedback control for chaos synchronization of nonlinear systems with different order, Commun nonlinear sci numer simulat 12, 568-583 (2007)
[12]Chen, H.; Sheu, G.; Lin, Y.; Chen, C.: Chaos synchronization between two different chaotic systems via nonlinear feedback control, Nonlinear anal 70, 4393-4401 (2009) · Zbl 1171.34324 · doi:10.1016/j.na.2008.10.069
[13]Wang, B.; Wen, G.: On the synchronization of a class of chaotic systems based on backstepping method, Phys lett A 370, 35-39 (2007) · Zbl 1209.93108 · doi:10.1016/j.physleta.2007.05.030
[14]Yassen, M. T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design, Phys lett A 360, 582-587 (2007)
[15]Wang, F.; Liu, C.: Synchronization of unified chaotic system based on passive control, Physica D 225, 55-60 (2007) · Zbl 1119.34332 · doi:10.1016/j.physd.2006.09.038
[16]Lee, S. M.; Ji, D. H.; Park, J. H.; Won, S. C.: H synchronization of chaotic systems via dynamic feedback approach, Phys lett A 372, 4905-4912 (2008) · Zbl 1221.93087 · doi:10.1016/j.physleta.2008.05.047
[17]Yau, H.; Shieh, C.: Chaos synchronization using fuzzy logic controller, Nonlinear anal: RWA 9, 1800-1810 (2008) · Zbl 1154.34334 · doi:10.1016/j.nonrwa.2007.05.009
[18]Chang, W.: PID control for chaotic synchronization using particle swarm optimization, Chaos soliton fract 39, 910-917 (2009) · Zbl 1197.93118 · doi:10.1016/j.chaos.2007.01.064
[19]Sun, Y.: Chaos synchronization of uncertain Genesio – Tesi chaotic systems with deadzone nonlinearity, Phys lett A 373, 3273-3276 (2009) · Zbl 1233.34016 · doi:10.1016/j.physleta.2009.07.025
[20]Yan, J.; Yang, Y.; Chiang, T.; Chen, C.: Robust synchronization of unified chaotic systems via sliding mode control, Chaos soliton fract 34, 947-954 (2007) · Zbl 1129.93489 · doi:10.1016/j.chaos.2006.04.003
[21]Jianwen, F.; Ling, H.; Chen, X.; Austin, F.; Geng, W.: Synchronizing the noise-perturbed Genesio chaotic system by sliding mode control, Commun nonlinear sci numer simulat 15, 2546-2551 (2010) · Zbl 1222.93121 · doi:10.1016/j.cnsns.2009.09.021
[22]Yau, H.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos soliton fract 22, 341-347 (2004) · Zbl 1060.93536 · doi:10.1016/j.chaos.2004.02.004
[23]Zhang, H.; Ma, X.; Liu, W.: Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos soliton fract 21, 1249-1257 (2004) · Zbl 1061.93514 · doi:10.1016/j.chaos.2003.12.073
[24]Feki, M.: Sliding mode control and synchronization of chaotic systems with parametric uncertainties, Chaos soliton fract 41, 1390-1400 (2009) · Zbl 1198.93056 · doi:10.1016/j.chaos.2008.05.022
[25]Lin, C.; Peng, Y.; Lin, M.: CMAC-based adaptive backstepping synchronization of uncertain chaotic systems, Chaos soliton fract 42, 981-988 (2009) · Zbl 1198.93110 · doi:10.1016/j.chaos.2009.02.028
[26]Ahmadi, A. A.; Majd, V. J.: Robust synchronization of a class of uncertain chaotic systems, Chaos soliton fract 42, 1092-1096 (2009) · Zbl 1198.93005 · doi:10.1016/j.chaos.2009.03.008
[27]Asheghan, M. M.; Beheshti, M. T. H.: An LMI approach to robust synchronization of a class of chaotic systems with gain variations, Chaos soliton fract 42, 1106-1111 (2009) · Zbl 1198.93195 · doi:10.1016/j.chaos.2009.03.152
[28]Zhang, H.; Ma, X.: Synchronization of uncertain chaotic systems with parameters perturbation via active control, Chaos soliton fract 21, 39-47 (2004) · Zbl 1048.37031 · doi:10.1016/j.chaos.2003.09.014
[29]Cai, N.; Jing, Y.; Zhang, S.: Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Commun nonlinear sci numer simulat 15, 1613-1620 (2010) · Zbl 1221.37211 · doi:10.1016/j.cnsns.2009.06.012
[30]Haeri, M.; Tavazoei, M. S.; Naseh, M. R.: Synchronization of uncertain chaotic systems using active sliding mode control, Chaos soliton fract 33, 1230-1239 (2007) · Zbl 1138.93045 · doi:10.1016/j.chaos.2006.01.076
[31]Kebriaei, H.; Yazdanpanah, M. J.: Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity, Commun nonlinear sci numer simulat 15, 430-441 (2010) · Zbl 1221.34139 · doi:10.1016/j.cnsns.2009.04.005
[32]Chen, C.: Quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems, Expert syst appl 36, 11827-11835 (2009)
[33]Yan, J.; Hung, M.; Liao, T.: Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters, J sound vibr 298, 298-306 (2006)
[34]Li, W.; Chang, K.: Robust synchronization of drive-response chaotic systems via adaptive sliding mode control, Chaos soliton fract 39, 2086-2092 (2009) · Zbl 1197.93146 · doi:10.1016/j.chaos.2007.06.067
[35]Wang, H.; Han, Z.; Xie, Q.; Zhang, W.: Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun nonlinear sci numer simulat 14, 2239-2247 (2009)
[36]Salarieh, H.; Alasty, A.: Adaptive chaos synchronization in Chua’s systems with noisy parameters, Math comput simulat 79, 233-241 (2008) · Zbl 1166.34029 · doi:10.1016/j.matcom.2007.11.007
[37]Zhang, G.; Liu, Z.; Zhang, J.: Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters, Phys lett A 372, 447-450 (2008) · Zbl 1217.37036 · doi:10.1016/j.physleta.2007.07.080
[38]Shen, L.; Wang, M.: Robust synchronization and parameter identification on a class of uncertain chaotic systems, Chaos soliton fract 38, 106-111 (2008)
[39]Ma, J.; Zhang, A.; Xia, Y.; Zhang, L.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems, Appl math comput 215, 3318-3326 (2010) · Zbl 1181.93032 · doi:10.1016/j.amc.2009.10.020
[40]El-Gohary, A.: Optimal synchronization of Rössler system with complete uncertain parameters, Chaos soliton fract 27, 345-355 (2006) · Zbl 1091.93025 · doi:10.1016/j.chaos.2005.03.043
[41]El-Gohary, A.; Sarhan, A.: Optimal control and synchronization of Lorenz system with complete unknown parameters, Chaos soliton fract 30, 1122-1132 (2006) · Zbl 1142.93408 · doi:10.1016/j.chaos.2005.09.025
[42]Zhang, L.; Huang, L.; Zhang, Z.; Wang, Z.: Fuzzy adaptive synchronization of uncertain chaotic systems via delayed feedback control, Phys lett A 372, 6082-6086 (2008) · Zbl 1223.93050 · doi:10.1016/j.physleta.2008.08.022
[43]Kim, J.; Park, C.; Kim, E.; Park, M.: Fuzzy adaptive synchronization of uncertain chaotic systems, Phys lett A 334, 295-305 (2005) · Zbl 1123.37307 · doi:10.1016/j.physleta.2004.11.033
[44]Hwang, E.; Hyun, C.; Kim, E.; Park, M.: Fuzzy model based adaptive synchronization of uncertain chaotic systems: robust tracking control approach, Phys lett A 373, 1935-1939 (2009) · Zbl 1229.34080 · doi:10.1016/j.physleta.2009.03.057
[45]Huang, J.: Chaos synchronization between two novel different hyperchaotic systems with unknown parameters, Nonlinear anal 69, 4174-4181 (2008) · Zbl 1161.34338 · doi:10.1016/j.na.2007.10.045
[46]Yassen, M. T.: Adaptive synchronization of two different uncertain chaotic systems, Phys lett A 337, 335-341 (2005) · Zbl 1136.34314 · doi:10.1016/j.physleta.2005.01.070
[47]Chen, X.; Lu, J.: Adaptive synchronization of different chaotic systems with fully unknown parameters, Phys lett A 364, 123-128 (2007) · Zbl 1203.93161 · doi:10.1016/j.physleta.2006.11.092
[48]Zhang, H.; Huang, W.; Wang, Z.; Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters, Phys lett A 350, 363-366 (2006) · Zbl 1195.93121 · doi:10.1016/j.physleta.2005.10.033
[49]Salarieh, H.; Shahrokhi, M.: Adaptive synchronization of two different chaotic systems with time varying unknown parameters, Chaos soliton fract 37, 125-136 (2008) · Zbl 1147.93397 · doi:10.1016/j.chaos.2006.08.038
[50]Yan, J.; Hung, M.; Chiang, T.; Yang, Y.: Robust synchronization of chaotic systems via adaptive sliding mode control, Phys lett A 356, 220-225 (2006) · Zbl 1160.37352 · doi:10.1016/j.physleta.2006.03.047
[51]Wang, C.; Ge, S. S.: Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos soliton fract 12, 1199-1206 (2001) · Zbl 1015.37052 · doi:10.1016/S0960-0779(00)00089-8
[52]Utkin, V.: Sliding modes in control and optimization, (1992) · Zbl 0748.93044
[53]Khalil, H-K.: Nonlinear system, (2002) · Zbl 1003.34002
[54]Lorenz, E.: Deterministic nonperiodic flow, J atmos sci 20, 130-141 (1963)
[55]Chen, G.; Ueta, T.: Yet another chaotic attractor, Int J bifur chaos 9, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[56]Liu, C.; Liu, T.; Liu, L.; Liu, K.: A new chaotic attractor, Chaos soliton fract 22, 1031-1038 (2004)