zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit. (English) Zbl 1221.93227
Summary: Stability analysis of the fractional-order modified Autonomous Van der Pol–Duffing (MAVPD) circuit is studied using the fractional Routh–Hurwitz criteria. A necessary condition for this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than 3. Furthermore, the fractional Routh–Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh–Hurwitz conditions and using specific choice of linear controllers, it is shown that the fractional-order MAVPD system is controlled to its equilibrium points; however, its integer-order counterpart is not controlled. Moreover, chaos synchronization of MAVPD system is found only in the fractional-order case when using a specific choice of nonlinear control functions. This shows the effect of fractional order on chaos control and synchronization. Synchronization is also achieved using the unidirectional linear error feedback coupling approach. Numerical results show the effectiveness of the theoretical analysis.
93D15Stabilization of systems by feedback
34A08Fractional differential equations
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
[1]Butzer, P. L.; Westphal, U.: An introduction to fractional calculus, (2000) · Zbl 0987.26005
[2]Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D.: Nonlinear noninteger order circuits and systems, (2000)
[3], Applications of fractional calculus in physics (2000)
[4]Ahmed, E.; Elgazzar, A. S.: On fractional order differential equations model for nonlocal epidemics, Physica A 379, 607-614 (2007)
[5]El-Sayed, A. M. A.; El-Mesiry, A. E. M.; El-Saka, H. A. A.: On the fractional-order logistic equation, Appl math lett 20, 817-823 (2007) · Zbl 1140.34302 · doi:10.1016/j.aml.2006.08.013
[6]Ahmad, W. M.; El-Khazali, R.: Fractional-order dynamical models of love, Chaos soliton fract 33, 1367-1375 (2007) · Zbl 1133.91539 · doi:10.1016/j.chaos.2006.01.098
[7]Bagley, R. L.; Calico, R. A.: Fractional order state equations for the control of viscoelastically damped structures, J guid control dyn 14, 304-311 (1991)
[8]Sun, H. H.; Abdelwahab, A. A.; Onaral, B.: Linear approximation of transfer function with a pole of fractional order, IEEE trans auto contr 29, 441-444 (1984) · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[9]Ichise, M.; Nagayanagi, Y.; Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process, J electroanal chem 33, 253-265 (1971)
[10]Heaviside, O.: Electromagnetic theory, (1971)
[11]Kusnezov, D.; Bulgac, A.; Dang, G. D.: Quantum Lévy processes and fractional kinetics, Phys rev lett 82, 1136-1139 (1999)
[12]Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II, Geophys J R astron soc 13, 529-539 (1967)
[13]Podlubny, I.: Fractional differential equations, (1999)
[14]Ben Adda, F.: Geometric interpretation of the fractional derivative, J fract calc 11, 21-52 (1997) · Zbl 0907.26005
[15]Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation, Fract calc appl anal 5, 367-386 (2002) · Zbl 1042.26003
[16]Grigorenko, I.; Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system, Phys rev lett 91, 034101 (2003)
[17]Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K.: Chaos in a fractional order Chua’s system, IEEE trans circ syst I 42, 485-490 (1995)
[18]Li, C. G.; Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations, Physica A 341, 55-61 (2004)
[19]Li, C. P.; Peng, G. J.: Chaos in Chen’s system with a fractional order, Chaos soliton fract 22, 443-450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[20]Wang, X. Y.; Wang, M. J.: Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos 17, 033106 (2007) · Zbl 1163.37382 · doi:10.1063/1.2755420
[21]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990)
[22]Matouk, A. E.: Dynamical analysis feedback control and synchronization of Liu dynamical system, Nonlinear anal theor meth appl 69, 3213-3224 (2008) · Zbl 1176.34060 · doi:10.1016/j.na.2007.09.029
[23]Ahmad, W. M.; Harb, A. M.: On nonlinear control design for autonomous chaotic systems of integer and fractional orders, Chaos soliton fract 18, 693-701 (2003) · Zbl 1073.93027 · doi:10.1016/S0960-0779(02)00644-6
[24]Li, C. G.; Liao, X. F.; Yu, J. B.: Synchronization of fractional order chaotic systems, Phys rev E 68, 067203 (2003)
[25]Li, C. G.; Chen, G.: Chaos in the fractional order Chen system and its control, Chaos soliton fract 22, 549-554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[26]Zhou, T.; Li, C. P.: Synchronization in fractional-order differential systems, Physica D 212, 111-125 (2005) · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[27]Deng, W. H.; Li, C. P.: Chaos synchronization of the fractional Lü system, Physica A 353, 61-72 (2005)
[28]Gao, X.; Yu, J. B.: Synchronization of two coupled fractional-order chaotic oscillators, Chaos soliton fract 26, 141-145 (2005) · Zbl 1077.70013 · doi:10.1016/j.chaos.2004.12.030
[29]Li, C. P.; Deng, W. H.; Xu, D.: Chaos synchronization of the Chua system with a fractional order, Physica A 360, 171-185 (2006)
[30]Lu, J. G.: Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal, Chaos soliton fract 27, 519-525 (2006) · Zbl 1086.94007 · doi:10.1016/j.chaos.2005.04.032
[31]Li, C. P.; Yan, J.: The synchronization of three fractional differential systems, Chaos soliton fract 32, 751-757 (2007)
[32]Peng, G.: Synchronization of fractional order chaotic systems, Phys lett A 363, 426-432 (2007) · Zbl 1197.37040 · doi:10.1016/j.physleta.2006.11.053
[33]Xingyuan, W.; Yijie, H.: Projective synchronization of fractional order chaotic system based on linear separation, Phys lett A 372, 435-441 (2008) · Zbl 1217.37035 · doi:10.1016/j.physleta.2007.07.053
[34]Peng, G.; Jiang, Y.; Chen, F.: Generalized projective synchronization of fractional order chaotic systems, Physica A 387, 3738-3746 (2008)
[35]Yu, Y.; Li, H. X.: The synchronization of fractional-order Rössler hyperchaotic systems, Physica A 387, 1393-1403 (2008)
[36]Shao, S.: Controlling general projective synchronization of fractional order Rössler systems, Chaos soliton fract 39, 1572-1577 (2009) · Zbl 1197.37041 · doi:10.1016/j.chaos.2007.06.011
[37]Zhu, H.; Zhou, S.; Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system, Chaos soliton fract 39, 1595-1603 (2009) · Zbl 1197.94233 · doi:10.1016/j.chaos.2007.06.082
[38]Deng, H.; Li, T.; Wang, Q.; Li, H.: A fractional-order hyperchaotic system and its synchronization, Chaos soliton fract 41, 962-969 (2009) · Zbl 1198.34115 · doi:10.1016/j.chaos.2008.04.034
[39]Zhu, H.; Zhou, S.; He, Z.: Chaos synchronization of the fractional-order Chen’s system, Chaos soliton fract 41, 2733-2740 (2009) · Zbl 1198.93206 · doi:10.1016/j.chaos.2008.10.005
[40]Wang, X. Y.; Song, J. M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun nonlinear sci numer simulat 14, 3351-3357 (2009) · Zbl 1221.93091 · doi:10.1016/j.cnsns.2009.01.010
[41]Matouk, A. E.: Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system, Phys lett A 373, 2166-2173 (2009) · Zbl 1229.34099 · doi:10.1016/j.physleta.2009.04.032
[42]Matouk, A. E.; Agiza, H. N.: Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor, J math anal appl 341, 259-269 (2008) · Zbl 1131.37037 · doi:10.1016/j.jmaa.2007.09.067
[43]Fan, Q. J.: Horseshoe in a modified van der Pol – Duffing circuit, Appl math comput 210, 436-440 (2009)
[44]Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.: On some Routh – Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys lett A 358, 1-4 (2006) · Zbl 1142.30303 · doi:10.1016/j.physleta.2006.04.087
[45]Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, J math anal appl 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[46]Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order, Electron trans numer anal 5, 1-6 (1997) · Zbl 0890.65071 · doi:emis:journals/ETNA/vol.5.1997/pp1-6.dir/pp1-6.html
[47]Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[48]Diethelm, K.; Freed, A. D.: The fracpece subroutine for the numerical solution of differential equations of fractional order, Forschung und wissenschaftliches rechnen, 57-71 (1999)
[49]Tavazoei, M. S.; Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems, Phys lett A 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[50]Jiang, G. P.; Tang, K. S.; Chen, G.: A simple global synchronization criterion for coupled chaotic systems, Chaos soliton fract 15, 925-935 (2003) · Zbl 1065.70015 · doi:10.1016/S0960-0779(02)00214-X