zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization of two chaotic systems with stochastic unknown parameters. (English) Zbl 1221.93246
Summary: Using the Lyapunov stability theory an adaptive control is proposed for chaos synchronization between two different systems which have stochastically time varying unknown coefficients. The stochastic variations of the coefficients about their unknown mean values are modeled through white Gaussian noise produced by the Wiener process. It is shown that using the proposed adaptive control the mean square of synchronization error converges to an arbitrarily small bound around zero. To demonstrate the effectiveness of the proposed technique, it is applied to the Lorenz–Chen and the Chen–Rössler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in synchronization of chaotic systems in noisy environment.
MSC:
93D21Adaptive or robust stabilization
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
References:
[1]Chen G. Control and synchronization of chaos, a bibliography. Dept of Elect Eng, Univ Houston: TX; 1997.
[2]Chen, G.; Dong, X.: On feedback control of chaotic continuous time systems, IEEE trans circ syst 40, 591-601 (1993) · Zbl 0800.93758 · doi:10.1109/81.244908
[3]Carroll, T. L.; Pecora, L. M.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990)
[4]Carroll, T. L.; Pecora, L. M.: Synchronizing chaotic circuits, IEEE trans circ syst 38, 453-456 (1991)
[5]Pecora, L. M.; Carroll, T. L.: Driving systems with chaotic signals, Phys rev A 44, 2374-2383 (1991)
[6]Kapitaniak, T.: Continuous control and synchronization in chaotic systems, Chaos soliton fract 6, 237-244 (1995) · Zbl 0976.93504 · doi:10.1016/0960-0779(95)80030-K
[7]Kocarev, L.; Halle, K. S.; Eckert, K.; Chua, L. O.; Parlitz, U.: Experimental observation of antimonotonicity in Chua’s circuit, Int J bifur chaos 3, 1051-1055 (1993) · Zbl 0894.58061 · doi:10.1142/S0218127493000878
[8]Cuomo, K. M.; Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications, Phys rev lett 71, 65-68 (1993)
[9]Kocarev, L.; Parlitz, U.: Generalized synchronization in chaotic systems, Phys rev lett 612, 57-61 (1995)
[10]Peng, J. H.; Ding, E. J.; Ding, M.; Yang, W.: Synchronizing hyperchaos with a scalar transmitted signal, Phys rev lett 76, 904-907 (1996)
[11]Feng, J.; Chen, S.; Wang, C.: Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification, Chaos soliton fract 26, 1163-1169 (2005) · Zbl 1122.93401 · doi:10.1016/j.chaos.2005.02.027
[12]Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys rev lett 76, 1816-1819 (1996)
[13]Murali, K.; Lakshmanan, M.: Secure communication using a compound signal from generalized synchronizable chaotic systems, Phys lett A 241, 303-310 (1998) · Zbl 0933.94023 · doi:10.1016/S0375-9601(98)00159-5
[14]Park, J. H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos soliton fract 26, 959-964 (2005) · Zbl 1093.93537 · doi:10.1016/j.chaos.2005.02.002
[15]Bai, E.; Lonngrn, K. E.: Sequential synchronization of two Lorenz systems using active control, Chaos soliton fract 11, 1041-1044 (2000) · Zbl 0985.37106 · doi:10.1016/S0960-0779(98)00328-2
[16]Park, J. H.: Synchronization of Genesio chaotic system via backstepping approach, Chaos soliton fract 27, 1369-1375 (2006) · Zbl 1091.93028 · doi:10.1016/j.chaos.2005.05.001
[17]Wang, C.; Ge, S.: Adaptive synchronisation of uncertain chaotic systems via backstepping design, Chaos soliton fract 12, 1199-1206 (2001) · Zbl 1015.37052 · doi:10.1016/S0960-0779(00)00089-8
[18]Yassen, M. T.: Adaptive chaos control and synchronization for uncertain new chaotic dynamical system, Phys lett A 350, 36-43 (2006) · Zbl 1195.34092 · doi:10.1016/j.physleta.2005.09.076
[19]Chen, S.; Lu, J.: Parameters identification and synchronization of chaotic systems based upon adaptive control, Phys lett A 299, 353-358 (2002) · Zbl 0996.93016 · doi:10.1016/S0375-9601(02)00724-7
[20]Park, J. H.: Synchronization of between two different chaotic dynamical systems, Chaos soliton fract 27, 549-554 (2006) · Zbl 1102.37304 · doi:10.1016/j.chaos.2005.03.049
[21]Yassen, M. T.: Chaos synchronization between two different chaotic systems using active control, Chaos soliton fract 23, 131-140 (2005) · Zbl 1091.93520 · doi:10.1016/j.chaos.2004.03.038
[22]Chen, H. K.: Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü, Chaos soliton fract 25, 1049-1056 (2005) · Zbl 1198.34069 · doi:10.1016/j.chaos.2004.11.032
[23]Huang, L.; Feng, R.; Wang, M.: Synchronization of chaotic systems via nonlinear control, Phys lett A 320, 271-275 (2004) · Zbl 1065.93028 · doi:10.1016/j.physleta.2003.11.027
[24]Ghosh, D.; Saha, P.; Chowdhury, A. R.: On synchronization of a forced delayed dynamical system via the Galerkin approximation, Commun nonlinear sci numer simul 12, 928-941 (2007) · Zbl 1115.37032 · doi:10.1016/j.cnsns.2005.08.006
[25]Zhang, H.; Huang, W.; Wang, Z.; Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters, Phys lett A 350, 363-366 (2006) · Zbl 1195.93121 · doi:10.1016/j.physleta.2005.10.033
[26]Salarieh, H.; Shahrokhi, M.: Adaptive synchronization of two chaotic systems with time varying unknown parameters, Chaos soliton fract (2006)
[27]Kakmeni, F. M. M.; Bowong, S.; Tchawoua, C.: Nonlinear adaptive synchronization of a class of chaotic systems, Phys lett A 355, 47-54 (2006)
[28]Wu, C.; Lei, Y.; Fang, T.: Stochastic chaos in a Duffing oscillator and its control, Chaos soliton fract 27, 459-469 (2005) · Zbl 1102.37312 · doi:10.1016/j.chaos.2005.04.035
[29]Wu, C.; Fang, T.; Rong, H.: Chaos synchronization of two stochastic Duffing oscillators by feedback control, Chaos soliton fract 32, 1201-1207 (2007) · Zbl 1129.37016 · doi:10.1016/j.chaos.2005.11.042
[30]Freeman, W. J.: A proposed name for aperiodic brain activity: stochastic chaos, Neural networks 13, 11-13 (2000)
[31]Billings, L.; Bollt, E. M.; Schwartz, I. B.: Phase-space transport of stochastic chaos in population dynamics of virus spread, Phys rev lett 88, 234101 (2002)
[32]Yu, W.; Cao, J.: Synchronization control of stochastic delayed neural networks, Physica A 373, 252-260 (2006)
[33]Baker, G. L.; Blackburn, J. A.; Smith, H. J. T.: A stochastic model of synchronization for chaotic pendulums, Phys lett A 252, 191-197 (1999)
[34]Mackevicius, V.: A note on synchronization of diffusion, Math comput simul 52, 491-495 (2000)
[35]Oksendal, B.: Stochastic differential equations, an introduction with applications, (1992) · Zbl 0747.60052
[36]Astrom, K. J.: Introduction to stochastic control theory, (1970)
[37]Skogestad, S.; Postlethwaite, I.: Multivariable feedback control analysis & design, (1996)