zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization under almost every initial data for stochastic neural networks with time-varying delays and distributed delays. (English) Zbl 1221.93247
Summary: This paper is concerned with the adaptive synchronization problem for a class of stochastic delayed neural networks. Based on the LaSalle invariant principle of stochastic differential delay equations and the stochastic analysis theory as well as the adaptive feedback control technique, a linear matrix inequality approach is developed to derive some novel sufficient conditions achieving complete synchronization of unidirectionally coupled stochastic delayed neural networks. In particular, the synchronization criterion considered in this paper is the globally almost surely asymptotic stability of the error dynamical system, which has seldom been applied to investigate the synchronization problem. Moreover, the delays proposed in this paper are time-varying delays and distributed delays, which have rarely been used to study the synchronization problem for coupled stochastic delayed neural networks. Therefore, the results obtained in this paper are more general and useful than those given in the previous literature. Finally, two numerical examples and their simulations are provided to demonstrate the effectiveness of the theoretical results.
MSC:
93D21Adaptive or robust stabilization
34K50Stochastic functional-differential equations
60H10Stochastic ordinary differential equations
92B20General theory of neural networks (mathematical biology)
References:
[1]Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control, Phys lett A 278, No. 4, 191-197 (2001) · Zbl 0972.37019 · doi:10.1016/S0375-9601(00)00777-5
[2]Boyd, S.; Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994)
[3]Carroll, T. L.; Pecora, L. M.: Synchronization chaotic circuits, IEEE trans circuit syst 38, No. 4, 453-456 (1991)
[4]Cao, J.; Lu, J.: Adaptive synchronization of neural networks with or without time-varying delays, Chaos 16, No. 1, 013133 (2006) · Zbl 1144.37331 · doi:10.1063/1.2178448
[5]Cui, B.; Lou, X.: Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control, Chaos soliton fract 39, No. 1, 288-294 (2009) · Zbl 1197.93135 · doi:10.1016/j.chaos.2007.01.100
[6]Fotsin, H. B.; Woafo, P.: Adaptive synchronization of a modified and uncertain chaotic van der Pol-Duffing oscillator based on parameter identification, Chaos soliton fract 24, No. 5, 1363-1371 (2005) · Zbl 1091.70010 · doi:10.1016/j.chaos.2004.09.101
[7]Fotsin, H. B.; Daafouz, J.: Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification, Phys lett A 339, No. 3-5, 304-315 (2005) · Zbl 1145.93313 · doi:10.1016/j.physleta.2005.03.049
[8]Gu K. An integral inequality in the stability problem of time-delay systems. In: Proceedings of 39th IEEE conference on decision and control, Sydney, Australia; 2000. pp. 2805 – 10.
[9]S. Haykin, Neural Networks, A comprehensive foundation. Prentice Hall, Inc., Upper Saddle River, New Jersey, 1994. · Zbl 0828.68103
[10]He, G.; Cao, Z.; Zhu, P.; Ogura, H.: Controlling chaos in a chaotic neural network, Neural networks 16, No. 8, 1195-1200 (2003)
[11]Heagy, J. F.; Carroll, T. L.; Pecora, L. M.: Experimental and numerical evidence for riddled basins in coupled chaotic systems, Phys rev lett 73, No. 26, 3528-3531 (1994)
[12]Huang, D.: Simple adaptive-feedback controller for identical chaos synchronization, Phys rev E 71, 037203 (2005)
[13]Huang, L.; Feng, R.; Wang, M.: Synchronization of chaotic systems via nonlinear control, Phys lett A 320, No. 4, 271-275 (2004) · Zbl 1065.93028 · doi:10.1016/j.physleta.2003.11.027
[14]Kakmeni, F.; Bowong, S.; Tchawoua, C.: Nonlinear adaptive synchronization of a class of chaotic systems, Phys lett A 355, No. 1, 47-54 (2006)
[15]Li, X.; Cao, J.: Adaptive synchronization for delayed neural networks with stochastic perturbation, J franklin inst 345, No. 7, 779-791 (2008) · Zbl 1169.93350 · doi:10.1016/j.jfranklin.2008.04.012
[16]Li, C.; Liao, X.; Yang, X.; Huang, T.: Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos 15, 023104 (2005) · Zbl 1144.37371 · doi:10.1063/1.2102107
[17]Li, T.; Fei, S.; Zhu, Q.; Cong, S.: Exponential synchronization of chaotic neural networks with mixed delays, Neurocomputing 71, No. 13-15, 3005-3019 (2008)
[18]Lei, Y.; Xu, W.; Zheng, H.: Synchronization of two chaotic nonlinear gyros using active control, Phys lett A 343, No. 1-3, 153-158 (2005) · Zbl 1194.34090 · doi:10.1016/j.physleta.2005.06.020
[19]Lu, J.; Cao, J.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos 15, 043901 (2005) · Zbl 1144.37378 · doi:10.1063/1.2089207
[20]Mahboobi, S. H.; Shahrokhi, M.; Pishkenari, H. N.: Observer-based control design for three well-known chaotic systems, Chaos soliton fract 29, No. 2, 381-392 (2006) · Zbl 1147.93390 · doi:10.1016/j.chaos.2005.08.042
[21]Mao, X.: Stochastic differential equation and application, (1997)
[22]Mao, X.: A note on the lasalle-type theorems for stochastic differential delay equations, J math anal appl 268, No. 1, 125-142 (2002) · Zbl 0996.60064 · doi:10.1006/jmaa.2001.7803
[23]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, No. 8, 821-824 (1990)
[24]Park, J. H.: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, J comput appl math 213, No. 1, 288-293 (2008) · Zbl 1137.93035 · doi:10.1016/j.cam.2006.12.003
[25]Park, J. H.: Synchronization of Genesio chaotic system via backstepping approach, Chaos soliton fract 27, No. 5, 1369-1375 (2006) · Zbl 1091.93028 · doi:10.1016/j.chaos.2005.05.001
[26]Salarieh, H.; Alasty, A.: Adaptive synchronization of two chaotic systems with stochastic unknown parameters, Commun nonlinear sci numer simulat 14, No. 2, 508-519 (2009) · Zbl 1221.93246 · doi:10.1016/j.cnsns.2007.09.002
[27]Sun, Y.; Cao, J.; Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks, Neurocomputing 70, No. 13-15, 2477-2485 (2007)
[28]Tang, Y.; Qiu, R.; Fang, J.; Miao, Q.; Xia, M.: Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Phys lett A 372, No. 24, 4425-4433 (2008) · Zbl 1221.82078 · doi:10.1016/j.physleta.2008.04.032
[29]Wang, C.; Su, J.: A new adaptive variable structure control for chaotic synchronization and secure communication, Chaos soliton fract 20, No. 5, 967-977 (2004) · Zbl 1050.93036 · doi:10.1016/j.chaos.2003.10.026
[30]Wang, K.; Teng, Z.; Jiang, H.: Adaptive synchronization of neural networks with time-varying delay and distributed delay, Physica A 387, No. 2-3, 631-642 (2008)
[31]Yang, Y.; Cao, J.: Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects, Physica A 386, No. 1, 492-502 (2007)
[32]Yu, W.; Cao, J.: Synchronization control of stochastic delayed neural networks, Physica A 373, No. 1, 252-260 (2007)
[33]Zhou, J.; Chen, T.; Xiang, L.: Robust synchronization of delayed neural networks based on adaptive control and parameters identification, Chaos soliton fract 27, No. 4, 905-913 (2006) · Zbl 1091.93032 · doi:10.1016/j.chaos.2005.04.022
[34]Zhu, Q.; Cao, J.: Adaptive synchronization of chaotic Cohen – crossberg neural networks with mixed time delays, Nonlinear dyn 61, No. 3, 517-534 (2010) · Zbl 1204.93064 · doi:10.1007/s11071-010-9668-8
[35]Zhu, Q.; Cao, J.: Stochastic stability of neural networks with both Markovian jump parameters and continuously distributed delays, Discrete dyn nat soc 2009, 20 (2009) · Zbl 1185.93147 · doi:10.1155/2009/490515
[36]Zhu, Q.; Cao, J.: Robust exponential stability of Markovian jump impulsive stochastic Cohen – Grossberg neural networks with mixed time delays, IEEE trans neural networks 21, No. 8, 1314-1325 (2010)
[37]Zhu Q, Cao J. Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays. IEEE Trans Syst Man Cybern B Cybern 2010. in press.
[38]Zhu, Q.; Cao, J.: Stability analysis for stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays, Neurocomputing 73, No. 13-15, 2671-2680 (2010)
[39]Zhu, Q.; Yang, X.; Wang, H.: Stochastically asymptotic stability of delayed recurrent neural networks with both Markovian jump parameters and nonlinear disturbances, J franklin inst 347, No. 2, 1489-1510 (2010) · Zbl 1202.93169 · doi:10.1016/j.jfranklin.2010.07.002