zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global robust passivity analysis for stochastic interval neural networks with interval time-varying delays and Markovian jumping parameters. (English) Zbl 1221.93248
Summary: The problem of passivity analysis is investigated for stochastic interval neural networks with interval time-varying delays and Markovian jumping parameters. By constructing a proper Lyapunov-Krasovskii functional, utilizing the free-weighting matrix method and some stochastic analysis techniques, we deduce new delay-dependent sufficient conditions, that ensure the passivity of the proposed model. These sufficient conditions are computationally efficient and they can be solved numerically by linear matrix inequality (LMI) Toolbox in Matlab. Finally, numerical examples are given to verify the effectiveness and the applicability of the proposed results.
MSC:
93D25Input-output approaches to stability of control systems
34K50Stochastic functional-differential equations
60J27Continuous-time Markov processes on discrete state spaces
93E03General theory of stochastic systems
Software:
Matlab
References:
[1]Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New York (1998)
[2]Chen, W.-H., Zheng, W.X.: Improved delay-dependent asymptotic stability criteria for delayed neural networks. IEEE Trans. Neural Netw. 19, 2154–2161 (2008) · doi:10.1109/TNN.2008.2006904
[3]Peng, G., Huang, L.: Exponential stability of hybrid stochastic recurrent neural networks with time-varying delays. Nonlinear Anal. Hybrid Syst. 2, 1198–1204 (2008) · Zbl 1164.90006 · doi:10.1016/j.nahs.2008.09.012
[4]Pardalos, P.M., Yatsenko, V.A. (eds.): Optimization and Control of Bilinear Systems Theory, Algorithms, and Applications Series. Springer Optimization and Its Applications, vol. 11. Springer, Berlin (2008)
[5]Hager, W., Pardalos, P.M. (eds.): Optimal Control: Theory, Algorithms, and Applications. Kluwer Academic, Dordrecht (1998)
[6]Pardalos, P.M., Tseveendorj, I., Enkhbat, R. (eds.): Optimization and Optimal Control. World Scientific, Singapore (2003)
[7]Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Tseveendorj, I. (eds.): Optimization and Optimal Control Theory and Applications Series. Springer Optimization and Its Applications, vol. 39. Springer, Berlin (2010)
[8]Anderson, B.D.O., Vongpanitlerd, S.: Network Analysis and Synthesis–A Modern Systems Theory Approach. Prentice Hall, Englewood Cliffs (1973)
[9]Hilla, D.J., Moylan, P.J.: Stability results for nonlinear feedback systems. Automatica 13, 377–382 (1977) · Zbl 0356.93025 · doi:10.1016/0005-1098(77)90020-6
[10]Lin, W., Byrnes, C.I.: Passivity and absolute stabilization of a class of discrete-time nonlinear systems. Automatica 31, 263–267 (1995) · Zbl 0826.93060 · doi:10.1016/0005-1098(94)00075-T
[11]Chua, L.O.: Passivity and complexity. IEEE Trans. Circuits Syst. I 46, 71–82 (1999) · Zbl 0948.92002 · doi:10.1109/81.739186
[12]Xie, L.H., Fu, M.Y., Li, H.Z.: Passivity analysis and passification for uncertain signal processing systems. IEEE Trans. Signal Process. 46, 2394–2403 (1998) · doi:10.1109/78.709527
[13]Wu, C.W.: Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion and observer design. IEEE Trans. Circuits Syst. I 48, 1257–1261 (2001) · Zbl 0999.94577 · doi:10.1109/81.956024
[14]Calcev, G., Gorez, R., Neyer, M.D.: Passivity approach to fuzzy control systems. Automatica 34, 339–344 (1998) · Zbl 0919.93047 · doi:10.1016/S0005-1098(97)00202-1
[15]Mahmoud, M.S., Ismail, A.: Passivity and passification of time-delay systems. J. Math. Anal. Appl. 292, 247–258 (2004) · Zbl 1084.93014 · doi:10.1016/j.jmaa.2003.11.055
[16]Li, C.G., Zhang, H.B., Liao, X.F.: Passivity and passification of fuzzy systems with time delays. Comput. Math. Appl. 52, 1067–1078 (2006) · Zbl 1122.93368 · doi:10.1016/j.camwa.2006.03.029
[17]Liu, X.W.: Passivity analysis of uncertain fuzzy delayed systems. Chaos Solitons Fractals 34, 833–838 (2007) · Zbl 1129.93030 · doi:10.1016/j.chaos.2006.03.093
[18]Li, C.G., Liao, X.F.: Passivity analysis of neural networks with time delay. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 52, 471–475 (2005) · doi:10.1109/TCSII.2005.849023
[19]Lou, X.Y., Cui, B.T.: Passivity analysis of integro-differential neural networks with time-varying delays. Neurocomputing 70, 1071–1078 (2007) · doi:10.1016/j.neucom.2006.09.007
[20]Park, J.H.: Further results on passivity analysis of delayed cellular neural networks. Chaos Solitons Fractals 34, 1546–1551 (2007) · Zbl 1152.34380 · doi:10.1016/j.chaos.2005.04.124
[21]Lu, C.-Y., Tsai, H.-H., Su, T.-J., Tsai, J.S.-H., Liao, C.-W.: A delay-dependent approach to passivity analysis for uncertain neural networks with time-varying delay. Neural Process. Lett. 27, 237–246 (2008) · doi:10.1007/s11063-008-9072-2
[22]Song, Q., Wang, Z.: New results on passivity analysis of uncertain neural networks with time-varying delays. Int. J. Comput. Math. 87, 668–678 (2010) · Zbl 1186.68392 · doi:10.1080/00207160802166507
[23]Xu, S., Zheng, W.X., Zou, Y.: Passivity analysis of neural networks with time-varying delays. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 56, 325–329 (2009) · doi:10.1109/TCSII.2009.2015399
[24]Chen, B., Li, H., Lin, C., Zhou, Q.: Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays. Phys. Lett. A 373, 1242–1248 (2009) · Zbl 1228.92002 · doi:10.1016/j.physleta.2009.01.047
[25]Chen, Y., Li, W., Bi, W.: Improved results on passivity analysis of uncertain neural networks with time-varying discrete and distributed delays. Neural Process. Lett. 30, 155–169 (2009) · Zbl 05802905 · doi:10.1007/s11063-009-9116-2
[26]Zhang, Z., Mou, S., Lam, J., Gao, H.: New passivity criteria for neural networks with time-varying delay. Neural Netw. 22, 864–868 (2009) · doi:10.1016/j.neunet.2009.05.012
[27]Song, Q., Liang, J., Wang, Z.: Passivity analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 72, 1782–1788 (2009) · Zbl 05718979 · doi:10.1016/j.neucom.2008.05.006
[28]Liang, J., Song, Q.: Global Passivity of Stochastic Neural Networks with Time-Varying Delays. Springer, Berlin Heidelberg (2009)
[29]Li, C.D., Liao, X.F., Zhang, R.: Global robust asymptotical stability of multi-delayed interval neural networks: an LMI approach. Phys. Lett. A 328, 452–462 (2004) · Zbl 1134.34327 · doi:10.1016/j.physleta.2004.06.053
[30]Shu, Z., Lam, J.: Global exponential estimates of stochastic interval neural networks with discrete and distributed delays. Neurocomputing 71, 2950–2963 (2008) · Zbl 05718710 · doi:10.1016/j.neucom.2007.07.003
[31]Su, W., Chen, Y.: Global robust exponential stability analysis for stochastic interval neural networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 14, 2293–2300 (2009) · Zbl 1221.93215 · doi:10.1016/j.cnsns.2008.05.001
[32]Tino, P., Cernansky, M., Benuskova, L.: Markovian architectural bias of recurrent neural networks. IEEE Trans. Neural Netw. 15, 6–15 (2004) · doi:10.1109/TNN.2003.820839
[33]Liu, Y., Wang, Z., Liu, X.: An LMI approach to stability analysis of stochastic high-order Markovian jumping neural networks with mixed time delays. Nonlinear Anal. Hybrid Syst. 2, 110–120 (2008) · Zbl 1157.93039 · doi:10.1016/j.nahs.2007.06.001
[34]Balasubramaniam, P., Rakkiyappan, R.: Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst. 3, 207–214 (2009) · Zbl 1184.93093 · doi:10.1016/j.nahs.2009.01.002
[35]Rakkiyappan, R., Balasubramaniam, P.: Dynamic analysis of Markovian jumping impulsive stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst. 3, 408–417 (2009) · Zbl 1194.93191 · doi:10.1016/j.nahs.2009.02.008