zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying delays. (English) Zbl 1221.93254
Summary: This paper investigates delay-dependent robust exponential state estimation of Markovian jumping fuzzy neural networks with mixed random time-varying delay. In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the robust exponential state estimation of Markovian jumping Hopfield neural networks with mixed random time-varying delays. Moreover probabilistic delay satisfies a certain probability-distribution. By introducing a stochastic variable with a Bernoulli distribution, the neural networks with random time delays is transformed into one with deterministic delays and stochastic parameters. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error is globally exponentially stable in the mean square. Based on the Lyapunov–Krasovskii functional and stochastic analysis approach, several delay-dependent robust state estimators for such T–S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving a delay-dependent LMI. Finally some numerical examples are provided to demonstrate the effectiveness of the proposed method.
MSC:
93E10Estimation and detection in stochastic control
34K50Stochastic functional-differential equations
60J28Applications of continuous-time Markov processes on discrete state spaces
82C32Neural nets (statistical mechanics)
92B20General theory of neural networks (mathematical biology)
References:
[1]Qiu, J.; Zhang, J.; Wang, J.; Xia, Y.; Shi, P.: A new global robust stability criteria for uncertain neural networks with fast time-varying delays, Chaos soliton fract 37, 360-368 (2008) · Zbl 1141.93046 · doi:10.1016/j.chaos.2007.10.040
[2]Chua, L.; Yang, L.: Cellular neural networks: theory and applications, IEEE trans circuits syst I 35, 1257-1290 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[3]Gopalsamy, K.: Stability of artificial neural networks with impulses, Appl math comput 154, 783-813 (2004) · Zbl 1058.34008 · doi:10.1016/S0096-3003(03)00750-1
[4]Hopfield, J. J.: Neurons with graded response have collective computational properties like those of two-state neurons, Proc natl acad sci 81, 3088-3092 (1984)
[5]Otawara, K.; Fan, L. T.; Tsutsumi, A.; Yano, T.; Kuramoto, K.; Yoshida, K.: An artificial neural network as a model for chaotic behavior of a three-phase fluidized bed, Chaos soliton fract 13, 353-362 (2002) · Zbl 1073.76656 · doi:10.1016/S0960-0779(00)00250-2
[6]Li, X.: Global exponential stability for a class of neural networks, Appl math lett 22, 1235-1239 (2009) · Zbl 1173.34345 · doi:10.1016/j.aml.2009.01.036
[7]Li, X.; Chen, Z.: Stability properties for Hopfield neural networks with delays and impulsive perturbations, Nonlinear anal: real world appl 10, 3253-3265 (2009) · Zbl 1162.92003 · doi:10.1016/j.nonrwa.2008.10.028
[8]Arik, S.: An analysis of exponential stability of delayed neural networks with time varying delays, Neural networks 14, 1027-1031 (2004) · Zbl 1068.68118 · doi:10.1016/j.neunet.2004.02.001
[9]Chen, T.; Wang, L.: Global μ-stability of delayed neural networks with unbounded time-varying delays, IEEE trans neural networks 18, 1836-1840 (2007)
[10]Zeng, Z.; Wang, J.: Improved conditions for global exponential stability of recurrent neural networks with time-varying delays, IEEE trans neural networks 17, No. 3, 623-635 (2006)
[11]Liao, X.; Wang, J.; Zeng, Z.: Global asymptotic stability and global exponential stability of delayed cellular neural networks, IEEE trans circuits syst-II: express briefs 52, 403-409 (2005)
[12]Mou, S.; Gao, H.; Qiang, W.; Chen, K.: New delay-dependent exponential stability for neural networks with time delay, IEEE trans syst man cybernet part-B 38, 571-576 (2008)
[13]Zhang, Q.; Ma, R.; Wang, C.; Xu, J.: Delay-dependent exponential stability of cellular neural networks with time-varying delays, Chaos soliton fract 23, 1363-1369 (2005) · Zbl 1094.34055 · doi:10.1016/j.chaos.2004.06.036
[14]Yue, D.; Zhang, Y. J.; Tian, E. G.: Delay-distribution-dependent exponential stability criteria for discrete-time recurrent neural networks with stochastic delay, IEEE trans neural networks 19, 1299-1306 (2008)
[15]Zhang, Y. J.; Yue, D.; Tian, E. G.: Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay, Neurocomputing 72, 1265-1273 (2009)
[16]Fu, J.; Zhang, H. G.; Ma, T.: Delay-probability-distribution-dependent robust stability analysis for stochastic neural networks with time-varying delay, Prog natural sci 19, 1333-1340 (2009)
[17]Yang, R.; Gao, H.; Lam, J.; Shi, P.: New stability criteria for neural networks with distributed and probabilistic delays, Circuits syst signal process 28, 505-522 (2009) · Zbl 1170.93027 · doi:10.1007/s00034-008-9092-1
[18]Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control, IEEE trans syst man cybernet 15, 116-132 (1985) · Zbl 0576.93021
[19]Cao, Y. Y.; Frank, P. M.: Analysis and synthesis of nonlinear timedelay systems via fuzzy control approach, IEEE trans fuzzy syst 8, 200-211 (2000)
[20]Takagi, T.; Sugeno, M.: Stability analysis and design of fuzzy control systems, Fuzzy set syst 45, 135-156 (1993) · Zbl 0758.93042 · doi:10.1016/0165-0114(92)90113-I
[21]Tanaka K, Ikede T, Wang HO. An LMI approach to fuzzy controller designs based on the relaxed stability conditions. In: Proceedings of the IEEE international conference on fuzzy systems, Barcelona, Spain; 1997. p. 171 – 6.
[22]Huang, H.; Ho, D. W. C.; Lam, J.: Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE trans circuits syst-II: express briefs 52, 251-255 (2005)
[23]Ali, M. Syed; Balasubramaniam, P.: Stability analysis of uncertain fuzzy Hopfield neural networks with time delays, Commun nonlinear sci numer simulat 14, 2776-2783 (2009) · Zbl 1221.34191 · doi:10.1016/j.cnsns.2008.09.024
[24]Sheng, L.; Gao, M.; Yang, H.: Delay-dependent robust stability for uncertain stochastic fuzzy Hopfield neural networks with time-varying delays, Fuzzy sets syst 160, 3503-3517 (2009) · Zbl 1185.93109 · doi:10.1016/j.fss.2009.09.015
[25]Li, H.; Chen, B.; Zhou, Q.; Qian, W.: Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters, IEEE trans syst man cybernet 39, 94-102 (2009)
[26]Rakkiyappan, R.; Balasubramaniam, P.: On exponential stability results for fuzzy impulsive neural networks, Fuzzy sets syst 161, 1823-1835 (2010) · Zbl 1198.34160 · doi:10.1016/j.fss.2009.12.016
[27]Bolle, D.; Dupont, P.; Vinck, B.: On the overlap dynamics of multi-state neural networks with a finite number of patterns, J phys A 25, 2859-2872 (1992) · Zbl 0800.82013 · doi:10.1088/0305-4470/25/10/014
[28]Cleeremans, A.; Servan-Schreiber, D.; Mcclelland, J. L.: Finite state automata and simple recurrent networks, Neural comput 1, 372-381 (1989)
[29]Wang, Z.; Liu, Y.; Liu, X.: On global asymtotic stability of neural networks with discrete and distributed delays, Phys lett A 345, 299-308 (2005)
[30]Tino, P.; Cernansky, M.; Benuskova, L.: Markovian architectural bias of recurrent neural networks, IEEE trans neural networks 15, 6-15 (2004)
[31]Balasubramaniam, P.; Lakshmanan, S.: Delay-range dependent stability criteria for neural networks with Markovian jumping parameters, Nonlinear anal: hybrid syst 3, 749-756 (2009) · Zbl 1175.93206 · doi:10.1016/j.nahs.2009.06.012
[32]He, Y.; Wang, Q. -G.; Wu, M.; Lin, C.: Delay-dependent state estimation for delayed neural networks, IEEE trans neural networks 17, 1077-1081 (2006)
[33]Wang, Z.; Ho, D. W. C.; Liu, X.: State estimation for delayed neural networks, IEEE trans neural networks 16, 279-284 (2005)
[34]Jin, L.; Nikiforuk, P. N.; Gupta, M. M.: Adaptive control of discrete time nonlinear systems using recurrent neural networks, IEEE proc control theory appl 141, 169-176 (1994) · Zbl 0803.93026 · doi:10.1049/ip-cta:19949976
[35]Huang, H.; Feng, G.; Cao, J.: An LMI approach to delay-dependent state estimation for delayed neural networks, Neurocomputing 71, 2857-2867 (2008)
[36]Park, J. H.; Kwon, O. M.: Design of state estimator for neural networks of neutral-type, Appl math comput 202, No. 1, 360-369 (2008) · Zbl 1142.93016 · doi:10.1016/j.amc.2008.02.024
[37]Li, T.; Fei, S-M.; Zhu, Q.: Design of exponential state estimator for neural networks with distributed delays, Nonlinear anal: real world appl 10, 1229-1242 (2009) · Zbl 1167.93318 · doi:10.1016/j.nonrwa.2007.10.017
[38]Lou, X.; Cui, B.: Design of state estimator for uncertain neural networks via the integral-inequality method, Nonlinear dynam 53, 223-235 (2008)
[39]Liu, Y.; Wang, Z.; Liu, X.: Design of exponential state estimators for neural networks with mixed time delays, Phys lett A 364, 401-412 (2007)
[40]Wang, H.; Song, Q.: State estimation for neural networks with mixed interval time-varying delays, Neurocomputing 73, 1281-1288 (2010)
[41]Mahmoud, M. S.: New exponentially convergent state estimation method for delayed neural networks, Neurocomputing 72, 3935-3942 (2009)
[42]Balasubramaniam, P.; Lakshmanan, S.; Theesar, S. Jeeva Sathya: State estimation for Markovian jumping recurrent neural networks with interval time-varying delays, Nonlinear dynam 60, 661-675 (2010) · Zbl 1194.62109 · doi:10.1007/s11071-009-9623-8
[43]Wang, Z.; Liu, Y.; Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays, Neural networks 22, 41-48 (2009)
[44]Ahn, C. K.: Delay-dependent state estimation for T – S fuzzy delayed Hopfield neural networks, Nonlinear dynam 61, 483-489 (2010) · Zbl 1204.93047 · doi:10.1007/s11071-010-9664-z
[45]Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994)
[46]Xu, S. Y.; Chen, T. W.: Robust Hcontrol for uncertain stochastic systems with state delay, IEEE trans automatic control 47, 2089-2094 (2002)
[47]Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003)