zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A block encryption algorithm based on dynamic sequences of multiple chaotic systems. (English) Zbl 1221.94067
Summary: A block encryption algorithm using dynamic sequences generated by multiple chaotic systems is proposed in this paper. In this algorithm, several one-dimension chaotic maps generate pseudo-random sequences, which are independent and approximately uniform. After a series of transformations, the sequences constitute a new pseudo-random sequence uniformly distributing in the value space, which covers the plaintext by executing Exclusive-OR and shifting operations some rounds to form the cipher. This algorithm makes the pseudo-random sequence possess more concealment and noise like characteristic, and overcomes the periodic malpractice caused by the computer precision and single chaotic system. Simulation results show that the algorithm is efficient and useable for the security of communication system.
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
[1]Matthews, R.: On the derivation of a ”chaotic” encryption algorithm, Cryptologia 13, 29-42 (1989)
[2]Wang, X. Y.: Chaos in complex nonlinear system, (2003)
[3]Brown, R.; Chua, L. O.: Clarifying chaos: examples and counterexamples, Int J bifur chaos 6, 219-249 (1996) · Zbl 0874.58038 · doi:10.1142/S0218127496000023
[4]Baptista, M. S.: Cryptography with chaos, Phys lett A 240, 50-54 (1998) · Zbl 0936.94013 · doi:10.1016/S0375-9601(98)00086-3
[5]Alvarez, E.; Fernández, A.; Garcı&acute, P.; A; Jiménez, J.; Marcano, A.: New approach to chaotic encryption, Phys lett A 263, 373-375 (1999)
[6]Kocarev L, Jakimoski G, Stojanovski T, Parlitz U. From chaotic maps to encryption schemes. In: IEEE international symposium circuits and systems; 1998. p. 514 – 7.
[7]Alvarez G, Pastor G, Montoya F, Romera M. Chaotic cryptosystems. In: Proceedings of the IEEE international carnahan conference on security technology; 1999. p. 332 – 8.
[8]Li, S. J.; Mou, X. Q.; Cai, Y. L.: On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision, Comput phys commun 153, 52-58 (2003) · Zbl 1196.94057 · doi:10.1016/S0010-4655(02)00875-5
[9]Pareek, N. K.; Patidar, V.; Sud, K. K.: Cryptography using multiple one-dimensional chaotic maps, Commun nonlinear sci numer simul 10, 715-723 (2005) · Zbl 1075.68027 · doi:10.1016/j.cnsns.2004.03.006
[10]Pareek, N. K.; Patidar, V.; Sud, K. K.: Discrete chaotic cryptography using external key, Phys lett A 309, 75-82 (2003) · Zbl 1010.68063 · doi:10.1016/S0375-9601(03)00122-1
[11]Feldmann U, Hasler M, Schwarz W. Communication by chaotic signals: the inverse system approach. In: IEEE international symposium circuits and systems; 1995. p. 680 – 3.
[12]Wong, W. K.; Lee, L. P.; Wong, K. W.: A modified chaotic cryptographic method, Comput phys commun 138, 234-236 (2001) · Zbl 0987.94033 · doi:10.1016/S0010-4655(01)00220-X
[13]Jakimoski, G.; Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps, IEEE trans circuit syst I 48, 163-169 (2001) · Zbl 0998.94016 · doi:10.1109/81.904880
[14]Wong, K. W.: A fast chaotic cryptographic scheme with dynamic lookup table, Phys lett A 298, 238-242 (2002) · Zbl 0995.94029 · doi:10.1016/S0375-9601(02)00431-0
[15]Wong, K. W.: A combined chaotic cryptographic and hashing scheme, Phys lett A 307, 292-298 (2003) · Zbl 1008.94018 · doi:10.1016/S0375-9601(02)01770-X
[16]Stinson, D. R.: Cryptography: theory and practice, (1995) · Zbl 0855.94001
[17]Biham, E.; Shamir, A.: Differential cryptanalysis of data encryption standard, (1993) · Zbl 0778.94005
[18]Jakimoski, G.; Kocarev, L.: Differential and linear probabilities of a block-encryption cipher, IEEE trans circuit syst I 50, 121-123 (2003)