zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient and secure Diffie-Hellman key agreement protocol based on Chebyshev chaotic map. (English) Zbl 1221.94073
Summary: This paper proposes a new efficient and secure Diffie–Hellman key agreement protocol based on Chebyshev chaotic map. The proposed key agreement protocol uses the semi-group property of Chebyshev polynomials to agree Diffie–Hellman based session key. The proposed protocol provides strong security compared with the previous related protocols. In addition, the proposed protocol does not require any timestamp information and greatly reduces computational costs between communication parties. As a result, the proposed protocol is more practical and provides computational/communicational efficiency compare with several previously proposed key agreement protocols based on Chebyshev chaotic map.
MSC:
94A60Cryptography
37N99Applications of dynamical systems
References:
[1]Liu, B.; Peng, J.: Nonlinear dynamics, (2004)
[2]Baptista, M. S.: Cryptography with chaos, Phys lett A 240, 50-54 (1998) · Zbl 0936.94013 · doi:10.1016/S0375-9601(98)00086-3
[3]Wong, K. W.: A fast chaotic cryptographic scheme with dynamic look-up table, Phys lett A 298, 238-242 (2002) · Zbl 0995.94029 · doi:10.1016/S0375-9601(02)00431-0
[4]Behnia, S.; Akhshani, A.; Ahadpour, S.; Mahmodi, H.; Akhavan, A.: A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps, Phys lett A 366, 391-396 (2007)
[5]Guan, Z. H.; Huang, F.; Guan, W.: Chaos-based image encryption algorithm, Phys lett A 346, 153-157 (2005) · Zbl 1195.94056 · doi:10.1016/j.physleta.2005.08.006
[6]Wong, K. W.; Kwok, B. S. H.; Law, W. S.: A fast image encryption scheme based on chaotic standard map, Phys lett A 372, 2645-2652 (2008) · Zbl 1220.94044 · doi:10.1016/j.physleta.2007.12.026
[7]Gao, T.; Chen, Z.: A new image encryption algorithm based on hyper-chaos, Phys lett A 372, 394-400 (2008) · Zbl 1217.94096 · doi:10.1016/j.physleta.2007.07.040
[8]Wang, S.; Liu, W.; Lu, H.; Kuang, J.; Hu, G.: Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications, Int J mod phys B 18, 2617-2622 (2004)
[9]Wang, X.; Zhan, M.; Lai, C. -H.; Gang, H.: Error function attack of chaos synchronization based encryption schemes, Chaos 14, 128-137 (2004)
[10]Kocarev L, Tasev Z. Public-key encryption based on Chebyshev maps. In: Proc IEEE Symp Circ Syst (ISCAS03), vol. 3. 2003. p. 28 – 31.
[11]Bergamo, P.; D’arco, P.; Santis, A.; Kocarev, L.: Security of public key cryptosystems based on Chebyshev polynomials, IEEE trans circ syst I 52, 1382-1393 (2005)
[12]Bose, R.: Novel public key encryption technique based on multiple chaotic systems, Phys rev lett 95, 098702 (2005)
[13]Wang, K.; Pei, W.; Zhou, L.; Cheung, Y.; He, Z.: Security of public key encryption technique based on multiple chaotic system, Phys lett A 360, 259-262 (2006)
[14]Zhang, L.: Cryptanalysis of the public key encryption based on multiple chaotic systems, Chaos soliton fract 37, 669-674 (2008) · Zbl 1134.94371 · doi:10.1016/j.chaos.2006.09.047
[15]Xiao, D.; Liao, X.; Deng, S.: A novel key agreement protocol based on chaotic maps, Inform sci 177, 1136-1142 (2007)
[16]Han, S.: Security of a key agreement protocol based on chaotic maps, Chaos soliton fract 38, 764-768 (2008) · Zbl 1146.94304 · doi:10.1016/j.chaos.2007.01.017
[17]Chang E, Han S. Using passphrase to construct key agreement. CBS-IS-2006, Technical report, Curtin University of Technology; 2006.
[18]Han, S.; Chang, E.: Chaotic map based key agreement with/out clock synchronization, Chaos soliton fract 39, 1283-1289 (2009) · Zbl 1197.94190 · doi:10.1016/j.chaos.2007.06.030
[19]Wang, X.; Zhao, J.: An improved key agreement protocol based on chaos, Commun nonlinear sci numer simulat 15, 4052-4057 (2010) · Zbl 1222.94039 · doi:10.1016/j.cnsns.2010.02.014
[20]Deng, S.; Li, Y.; Xiao, D.: Analysis and improvement of a chaos-based hash function construction, Commun nonlinear sci numer simulat 15, 1338-1347 (2010) · Zbl 1221.94043 · doi:10.1016/j.cnsns.2009.05.065
[21]Xiao, D.; Shih, F.; Liao, X.: A chaos-based hash function with both modification detection and localization capabilities, Commun nonlinear sci numer simulat 15, 2254-2261 (2010) · Zbl 1222.94040 · doi:10.1016/j.cnsns.2009.10.012
[22]Schneier B. Applied cryptography. In: Protocol, algorithms and source code. New York: Wiley; 1996. · Zbl 0853.94001
[23]Menezes, A.; Van Oorschot, P.; Vanstone, S.: Handbook of applied cryptography, (1997)
[24]Stallings, W.: Cryptography and network security: principles and practice, (2002)