zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stability of fuzzy Cohen-Grossberg neural networks with time delays and impulsive effects. (English) Zbl 1222.34090
Summary: We investigate a class of fuzzy Cohen-Grossberg neural networks with time delays and impulsive effects. By employing an inequality technique, we find sufficient conditions for the existence, uniqueness, global exponential stability of the equilibrium without using the M-matrix theory. An example is given to illustrate the effectiveness of the obtained results.
MSC:
34K20Stability theory of functional-differential equations
34K36Fuzzy functional-differential equations
34A09Implicit equations, differential-algebraic equations
34K45Functional-differential equations with impulses
92B20General theory of neural networks (mathematical biology)
References:
[1]Cohen, M.; Grossberg, S.: Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE trans syst, man, cybern 13, 815-826 (1983) · Zbl 0553.92009
[2]Sun, J.; Wan, L.: Global exponential stability and periodic solutions of Cohen – Grossberg neural networks with continuously distributed delays, Phys D 208, 1-20 (2005) · Zbl 1086.34061 · doi:10.1016/j.physd.2005.05.009
[3]Li, Y.; Fan, X.: Existence and globally exponential stability of almost periodic solution for Cohen – Grossberg BAM neural networks with variable coefficients, Appl math model 33, No. 4, 2114-2120 (2009) · Zbl 1205.34086 · doi:10.1016/j.apm.2008.05.013
[4]Xiong, W.; Cao, J.: Global exponential stability of discrete-time Cohen – Grossberg neural networks, Neurocomputing 64, 433-446 (2005)
[5]Wang, L.: Stability of Cohen – Grossberg neural networks with distributed delays, Appl math comput 160, 93-110 (2005) · Zbl 1069.34113 · doi:10.1016/j.amc.2003.09.014
[6]Cao, J.; Liang, J.: Boundedness and stability for Cohen – Grossberg neural network with time-varying delays, J math anal appl 296, No. 2, 665-685 (2004) · Zbl 1044.92001 · doi:10.1016/j.jmaa.2004.04.039
[7]Huang, T.: Exponential stability of fuzzy cellular neural networks with distributed delays, Phys lett A 351, No. 1 – 2, 48-52 (2006)
[8]Huang, T.: Exponential stability of delayed fuzzy cellular neural networks with diffusion, Chaos, solitons fractals 31, No. 3, 658-664 (2007) · Zbl 1138.35414 · doi:10.1016/j.chaos.2005.10.015
[9]Liu, Y.; Tang, W.: Exponential stability of fuzzy cellular neural networks with constants and time-varying delays, Phys lett A 323, No. 3 – 4, 224-233 (2004) · Zbl 1118.81400 · doi:10.1016/j.physleta.2004.01.064
[10]Li, K.; Li, Z.; Song, Q.: Behaviour of impulsive fuzzy cellular neural networks wth distributed delays, Electr J differ eqn, No. 50, 1-16 (2007)
[11]Kuang, Y.; Cao, J.; Deng, J.: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays, Neurocomputing 69, No. 13 – 15, 1619-1627 (2006)
[12]Yang, T.; Yang, L.: The global stability of fuzzy cellular neural networks, IEEE trans cric syst I 43, No. 10, 880-883 (1996)
[13]He, D.; Xu, D.: Attracting and invariant sets of fuzzy cohn – Grossberg neural networks with time-varying delays, Phys lett A (2008)
[14]Song, Q.; Cao, J.: Impulsive effects and stability of fuzzy Cohen – grossbeg neural networks with time-varying delays, IEEE trans syst, man cybern – part B 37, No. 3, 733-741 (2007)
[15]Niu, S.; Jiang, H.; Teng, Z.: Exponential stability and periodic solutions of fcnns with variable coefficients and time varying delays, Neurocomputing 71, 2929-2936 (2008)
[16]Xia, Y. H.; Yang, Z.; Han, M.: Lag synchronization of chaotic delayed Yang – Yang type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification, IEEE trans neur networks 20, No. 7, 1165-1180 (2009)
[17]Xia, Y. H.; Yang, Z.; Han, M.: Synchronization schemes for coupled identical Yang – Yang type fuzzy cellular neural networks, Commun nonlinear sci numer simul 14, No. 9 – 10, 3645-3659 (2009) · Zbl 1221.37227 · doi:10.1016/j.cnsns.2009.01.028
[18]Rakkiyappan, R.; Balasubramaniam, P.; Cao, J.: Global exponential stability results for neutral-type impulsive neural networks, Nonlinear anal.: real world appl (2008)
[19]Li, Y.; Xing, W.; Lu, L.: Existence and global exponential stability of periodic solution of a class of neural networks with impulses, Chaos, solitons fractals 27, 437-445 (2006) · Zbl 1084.68103 · doi:10.1016/j.chaos.2005.04.021
[20]De La Sen, M.: Stability of impulsive time-varying systems and compactness of the operators mapping the input space into the state and output spaces, J math anal appl 321, No. 2, 621-650 (2006) · Zbl 1111.93072 · doi:10.1016/j.jmaa.2005.08.038
[21]Su, W. W.; Chen, Y. M.: Global robust stability criteria of stochastic Cohen – Grossberg neural networks with discrete and distributed time-varying delays, Commun nonlinear sci numer simul 14, No. 2, 520-528 (2009) · Zbl 1221.37196 · doi:10.1016/j.cnsns.2007.09.001
[22]Liao, X. F.; Yang, J. Y.; Guo, S. T.: Exponential stability of Cohen – Grossberg neural networks with delays, Commun nonlinear sci numer simul 13, No. 9, 1767-1775 (2008) · Zbl 1221.34144 · doi:10.1016/j.cnsns.2007.03.032