zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetry group classification for general Burgers equation. (English) Zbl 1222.35195
Summary: The present paper solves the problem of the group classification of the general Burgers’ equation u t =f(x,u)u x 2 +g(x,u)u xx , where f and g are arbitrary smooth functions of the variable x and u, by using the Lie method. The paper is one of the few applications of an algebraic approach to the problem of group classification that is called preliminary group classification. Looking at the adjoint representation of G on its Lie algebra 𝔤 5 , we will deal with the construction of the optimal system of its one-dimensional subalgebras. The result of the work is a wide class of equations summarized in table form.
MSC:
35Q60PDEs in connection with optics and electromagnetic theory
35K55Nonlinear parabolic equations
35A30Geometric theory for PDE, characteristics, transformations
References:
[1]Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals, Arch math 6, 328 (1881)
[2]Ovsiannikov, L. V.: Group analysis of differential equations, (1982) · Zbl 0485.58002
[3]Ibragimov, N. H.; Tottisi, M.; Valenti, A.: Preliminary group classification of equations utt=f(x,ux)uxx+g(x,ux), J math phys 32, No. 11, 2988-2995 (1991) · Zbl 0737.35099 · doi:10.1063/1.529042
[4]Song, L.; Zhang, H.: Preliminary group classification for the nonlinear wave equation utt=f(x,u)uxx+g(x,u), Nonlinear anal (2008)
[5]Ibragimov, N. H.; Tottisi, M.; Valenti, A.: Differential invariants of nonlinear equations utt=f(x,ux)uxx+g(x,ux), Commun nonlinear sci numer simul 9, 6980 (2004) · Zbl 1046.35074 · doi:10.1016/j.cnsns.2003.09.001
[6]Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M.: Method for solving the kortewegde Vries equation, Phys rev lett 19, 10951097 (1967) · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[7]Li, Y. S.: Soliton and integrable systems, (1999)
[8]Hirota, R.; Satsuma, J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the tota lattice, Suppl prog theor phys 59, 64100 (1976)
[9]Olver, P. J.: Applications of Lie group to differential equations, Graduate text maths 107 (1986) · Zbl 0588.22001
[10]Bluman, G. W.; Kumei, S.: Symmetries and differential equations, (1989)
[11]Cantwell, B. J.: Introduction to symmetry analysis, (2002)
[12]Liu, H.; Li, J.; Zhangb, Q.: Lie symmetry analysis and exact explicit solutions for general Burgers equation, J comput appl math (2008)
[13]Gandarias, M. L.; Torrisi, M.; Tracina, R.: On some differential invariants for a family of diffusion equations, J phys A: math theor 40, 8803-8813 (2007) · Zbl 1121.35006 · doi:10.1088/1751-8113/40/30/013
[14]Torrisi, M.; Tracina, R.: Second-order differential invariants of a family of diffusion equations, J phys A: math gen 38, 7519-7526 (2005) · Zbl 1078.35051 · doi:10.1088/0305-4470/38/34/006
[15]Gandarias, M. L.; Torrisi, M.; Valenti, A.: Symmetry classification and optimal systems of a non-linear wave equation, Int J nonlinear mech 39, 389398 (2004)
[16]Maluleke, G. H.; Mason, D. P.: Optimal system and group invariant solutions for a nonlinear wave equation, Commun nonlinear sci numer simul 9, 93104 (2004) · Zbl 1036.35010 · doi:10.1016/S1007-5704(03)00018-2
[17]Olver, P. J.: Equivalence, invariants, and symmetry, (1995) · Zbl 0837.58001