zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos in fractional conjugate Lorenz system and its scaling attractors. (English) Zbl 1222.37037
Summary: Chaotic dynamics of fractional conjugate Lorenz systems are demonstrated in terms of local stability and largest Lyapunov exponent. Chaos does exist in the fractional conjugate Lorenz system with order less than three since it has positive largest Lyapunov exponent. Furthermore, scaling chaotic attractors of a fractional conjugate Lorenz system is theoretically and numerically analyzed with the help of a one-way synchronization method and an adaptive synchronization method. Numerical simulations are performed to verify the theoretical analysis.
MSC:
37D45Strange attractors, chaotic dynamics
References:
[1]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[2]Hilfer, R.: Applications of fractional calculus in physics, (2001)
[3]Podlubny, I.: Fractional differential equations, (1999)
[4]Hartley, T. T.; Lorenzo; Qammer, H. K.: Chaos in a fractional order Chua’s system, IEEE trans CAS I 42, 485-490 (1995)
[5]Arena P, Caponetto R, Fortuna L, Porto D. Chaos in a fractional order Duffing system. In: Proceedings of European conference on circuit theory and design. Budapest; 1997. p. 1259 – 62.
[6]Grigorenko, I.; Grigorenko, E.: Chaos dynamics of fractional Lorenz system, Phys rev lett 91, 034101 (2003)
[7]Li, C. G.; Chen, G. R.: Chaos and hyperchaos in the fractional-order Rössler equations, Physica A 341, 55-61 (2004)
[8]Li, C. P.; Chen, G. R.: Chaos in the fractional order Chen system and its control, Chaos solitons fractals 22, 549-554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[9]Yang, Q. G.; Chen, G. R.; Zhou, T. S.: A unified Lorenz-type system and its canonical form, Int J bifurcation chaos 16, 2855-2871 (2006) · Zbl 1185.37088 · doi:10.1142/S0218127406016501
[10]Yang, Q. G.; Chen, G. R.; Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system, Int J bifurcation chaos 11, 3929-3949 (2007) · Zbl 1149.37308 · doi:10.1142/S0218127407019792
[11]Zhang, R. X.; Yang, S. P.: Chaos and circuit simulations of fractional-order conjugate Chen chaotic system, Acta phys sin 58, 2906-2957 (2009)
[12]Matignon D. Stability result on fractional differential equations with applications to control processing. In: IMACS-SMC proceedings. Lille, France; 1996. p. 963 – 8.
[13]Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, J math anal appl 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[14]Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[15]Tavazoei, M. S.; Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems, Phys lett A 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[16]Li, C. G.; Liao, X. X.; Yu, J. B.: Synchronization of fractional order chaotic systems, Phys rev E 68, 067203 (2003)
[17]Zhou, T. S.; Li, C. P.: Synchronization in fractional-order differential systems, Physica D 212, 111-125 (2005) · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[18]Li, C. P.; Deng, W. H.; Xu, D.: Chaos synchronization of the Chua system with a fractional order, Physica A 360, 171-185 (2006)
[19]Wang, J. W.; Xiong, X. H.; Zhang, Y.: Extending synchronization scheme to chaotic fractional-order chens system, Physica A 370, 279-285 (2006)
[20]Li, C. P.; Yan, J. P.: The synchronization of three fractional differential, systems, Chaos solitons fractals 32, 751-757 (2007)
[21]Yu, Y. G.; Li, H. X.: The synchronization of fractional-order Rössler hyperchaotic systems, Physica A 387, 1393-1403 (2008)
[22]Wang, X. Y.; Song, J. M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun nonlinear sci numer simul 14, 3351-3357 (2009) · Zbl 1221.93091 · doi:10.1016/j.cnsns.2009.01.010
[23]Xu, D.; Li, Z.; Bishop, S. R.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos 11, 439-442 (2001) · Zbl 0996.37075 · doi:10.1063/1.1380370
[24]Li, C. P.; Deng, W. H.: Scaling Chen’s attractor, Mod phys lett B 20, 633-639 (2006) · Zbl 1103.37021 · doi:10.1142/S0217984906010913
[25]Li, C. P.; Deng, W. H.; Chen, G. R.: Scaling attractors of fractional differential systems, Fractals 14, 303-313 (2006) · Zbl 1147.34042 · doi:10.1142/S0218348X06003337
[26]Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.: The synchronization of chaotic systems, Phys rep 366, 1-101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[27]Huang, D. B.: Synchronization-based estimation of all parameters of chaotic systems from time series, Phys rev E 69, 067201 (2004)