zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A family of multimodal dynamic maps. (English) Zbl 1222.39003
Summary: We introduce a family of multimodal logistic maps with a single parameter. The maps domain is partitioned in subdomains according to the maximal number of modals to be generated and each subdomain contains one logistic map. The number of members of a family is equal to the maximal number of modals. Bifurcation diagrams and basins of attraction of fixed points are constructed for the family of chaotic logistic maps.
MSC:
39A10Additive difference equations
39A30Stability theory (difference equations)
References:
[1]Li, T-Y.; Yorke, J. A.: Period three implies chaos, The am math mon 82, No. 10, 985-992 (1975) · Zbl 0351.92021 · doi:10.2307/2318254
[2]May, R. M.: Simple mathematical models with very complicated dynamics, Nature 261, No. 5560, 459-467 (1976)
[3]Elaydi, S. N.: Discrete chaos, (2000) · Zbl 0945.37010
[4]Banks, J.; Brooks, J.; Cairns, G.; Davis, G.; Stacey, P.: On devaney’s definition of chaos, The am math mon 99, 332-334 (1992) · Zbl 0758.58019 · doi:10.2307/2324899
[5]Banerjee, S.; Rahjan, P.; Grebogi, C.: Bifurcations in two-dimensional piecewise smooth maps theory and applications in switching circuits, IEEE trans circ syst I 47, 633-643 (2000) · Zbl 1050.37511 · doi:10.1109/81.847870
[6]Deane, J. H. B.: Chaos in a current-mode controlled boost dc – dc converter, IEEE trans circ syst I 39, 680-683 (1992)
[7]Pisarchik, A. N.; Flores-Carmona, N. J.; Carpio-Valadez, M.: Encryption and decryption of images with chaotic map lattices, Chaos: interdiscip J nonlinear sci 16, No. 3, 033118 (2006) · Zbl 1151.94560 · doi:10.1063/1.2242052
[8]Pisarchik, A. N.; Zanin, M.: Image encryption with chaotically coupled chaotic maps, Physica D 237, 2638-2648 (2008) · Zbl 1148.94431 · doi:10.1016/j.physd.2008.03.049
[9]Patidar, V.; Pareek, N. K.; Sud, K. K.: A new substitution – diffusion based image cipher using chaotic standard and logistic maps, Commun nonlinear sci numer simul 14, 3056-3075 (2009)
[10]Tang, Y.; Wang, Z.; Fang, J.: Image encryption using chaotic coupled map lattices with time-varying delays, Commun nonlinear sci numer simul 15, 2456-2468 (2010) · Zbl 1222.94012 · doi:10.1016/j.cnsns.2009.09.023
[11]Yang, H.; Wong, K. W.; Liao, X.; Zhang, W.; Wei, P.: A fast image encryption and authentication scheme based on chaotic maps, Commun nonlinear sci numer simul 15, 3507-3517 (2010) · Zbl 1222.94043 · doi:10.1016/j.cnsns.2010.01.004
[12]Yoon, J. W.; Kim, H.: An image encryption scheme with a pseudorandom permutation based on chaotic maps, Commun nonlinear sci numer simul 15, 3998-4006 (2010) · Zbl 1222.94041 · doi:10.1016/j.cnsns.2010.01.041
[13]Pisarchik, A. N.; Ruiz-Oliveras, F. R.: Optical chaotic communication using generalized and complete synchronization, IEEE J quant electron 46, No. 3, 279-284 (2010)
[14]Suneel, M.: Electronic circuit realization of the logistic map, Sadhana 31, No. Part 1, 69-78 (2006)
[15]Campos-Cantón, I.; Campos-Cantón, E.; ı&acute, J. S. Murgu; A; Rosu, H. C.: A simple electronic circuit realization of the tent map, Chaos, solitons fract 42, No. 1, 12-16 (2009)
[16]Verhulst, P. F.: Notice sur la loi que la population poursuit dans son accroissement, Corres math phys 10, 113-121 (1838)
[17]Arroyo, D.; Alvarez, G.; Amigó, J. M.: Estimation of the control parameter from symbolic sequences: unimodal maps with variable critical point, Chaos 19, 023125 (2009)
[18]N. Mihalache, Two counterexamples in rational and interval dynamics, 2008, 1 – 49, 0810.1474v1.
[19]De Melo, W.; Van Strien, S.: One-dimensional dynamics, Ergebnisse der Mathematik und ihrer grenzgebiete (3) 25 (1993) · Zbl 0791.58003
[20]Smania, D.: Phase space universality for multimodal maps, Bull braz math soc new ser 36, No. 2, 225-274 (2005) · Zbl 1100.37024 · doi:10.1007/s00574-005-0038-y