zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of pexiderized quadratic functional equation in intuitionistic fuzzy normed space. (English) Zbl 1222.39022

The authors consider the Pexider form f(x+y)+f(x-y)=2g(x)+2h(y) of the quadratic functional equation and investigate the stability thereof in the case of intuitionistic fuzzy normed Banach spaces under certain additional conditions.

It should be remarked that the definition of Cauchy sequences given at the very beginning seems to be incorrect. Transformed to “classical” normed spaces the definition would mean that a sequence (x n ) is Cauchy if x n+p -x n tended to zero for n to infinity for all (fixed) p. The sequence of the numbers ln(n) obviously satisfies the above condition, is unbounded, and thus not a Cauchy sequence.

MSC:
39B82Stability, separation, extension, and related topics
39B52Functional equations for functions with more general domains and/or ranges
46S40Fuzzy functional analysis
References:
[1]Ulam, S. M.: Problems in modern mathematics (Chapter VI, some questions in analysis: section 1, stability), (1960)
[2]Hyers, D. H.: On the stability of the linear functional equation, Proc. natl. Acad. sci. USA 27, 222-224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[3]Aoki, T.: On the stability of the linear transformation in Banach spaces, J. math. Soc. Japan 2, 64-66 (1950) · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[4]Rassias, T. M.: On the stability of functional equations and a problem of Ulam, Acta. appl. Math. 62, 123-130 (2000) · Zbl 0981.39014 · doi:10.1023/A:1006499223572
[5]Jun, K. -W.; Kim, H. -M.: On the Hyers–Ulam–rassias stability of a general cubic functional equation, Math. inequal appl. 6, No. 1, 87-95 (2003)
[6]Jun, K. -W.; Kim, H. -M.: On the Hyers–Ulam stability of a generalized quadratic and additive functional equation, Bull. korean math. Soc. 42, No. 1, 133-148 (2005) · Zbl 1071.39030 · doi:10.4134/BKMS.2005.42.1.133
[7]Lee, Y. -S.; Chung, S. -Y.: Stability of the Jensen type functional equation, Banach J. Math. anal. 1, No. 1, 91-100 (2007) · Zbl 1130.39025 · doi:emis:journals/BJMA/v1n1/tex_v1_n1_a10.pdf
[8]Najati, A.: Hyers–Ulam–rassias stability of a cubic functional equation, Bull. korean math. Soc. 44, No. 4, 825-840 (2007) · Zbl 1140.39015 · doi:10.4134/BKMS.2007.44.4.825
[9]Mirmostafaee, A. K.; Moslehian, M. S.: Fuzzy almost quadratic functions, Results math. 52, 161-177 (2008) · Zbl 1157.46048 · doi:10.1007/s00025-007-0278-9
[10]Mirmostafaee, A. K.; Moslehian, M. S.: Fuzzy versions of Hyers–Ulam–rassias theorem, Fuzzy sets syst. 159, 720-729 (2008) · Zbl 1178.46075 · doi:10.1016/j.fss.2007.09.016
[11]Mohiuddine, S. A.: Stability of Jensen functional equation in intuitionistic fuzzy normed space, Chaos solitons fractals 42, 2989-2996 (2009) · Zbl 1198.39034 · doi:10.1016/j.chaos.2009.04.040
[12]Mursaleen, M.; Mohiuddine, S. A.: On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos solitons fractals 42, 2997-3005 (2009) · Zbl 1198.39035 · doi:10.1016/j.chaos.2009.04.041
[13]Saadati, R.; Park, J. H.: On the intuitionistic fuzzy topological spaces, Chaos solitons fractals 27, 331-344 (2006) · Zbl 1083.54514 · doi:10.1016/j.chaos.2005.03.019
[14]Mohiuddine, S. A.; Lohani, Q. M. Danish: On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos solitons fractals 42, 1731-1737 (2009) · Zbl 1200.46067 · doi:10.1016/j.chaos.2009.03.086
[15]Mursaleen, M.; Mohiuddine, S. A.: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos solitons fractals 41, 2414-2421 (2009) · Zbl 1198.40007 · doi:10.1016/j.chaos.2008.09.018
[16]Mursaleen, M.; Mohiuddine, S. A.: Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet differentiation, Chaos solitons fractals 42, 1010-1015 (2009) · Zbl 1200.46068 · doi:10.1016/j.chaos.2009.02.041
[17]Mursaleen, M.; Mohiuddine, S. A.: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. comput. Appl. math. 233, 142-149 (2009) · Zbl 1183.46070 · doi:10.1016/j.cam.2009.07.005