zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Legendre wavelet method for solving fractional differential equations. (English) Zbl 1222.65063
Summary: Fractional differential equations are solved using the Legendre wavelets. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. The illustrative examples are provided to demonstrate the applicability, simplicity of the numerical scheme based on the Legendre wavelets.
MSC:
65L05Initial value problems for ODE (numerical methods)
65L10Boundary value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
34B15Nonlinear boundary value problems for ODE
34A08Fractional differential equations
References:
[1], Applications of fractional calculus in physics (2000)
[2]Kulish, V. V.; Lage, José L.: Application of fractional calculus to fluid mechanics, J fluids eng 124 (2002)
[3]Oldham, K. B.: Fractional differential equations in electrochemistry, Adv eng soft 41, 9-12 (2010) · Zbl 1177.78041 · doi:10.1016/j.advengsoft.2008.12.012
[4]Podlubny, I.: Fractional differential equations, (1999)
[5]Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor corrector approach for the numerical solution of fractional differential equation, Nonlin dyn 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[6]Hashim, I.; Abdulaziz, O.; Momani, S.: Homotopy analysis method for fractional ivps, Commun nonlin sci num simul 14, 674-684 (2009) · Zbl 1221.65277 · doi:10.1016/j.cnsns.2007.09.014
[7]Lepik, Ü.: Solving fractional integral equations by the Haar wavelet method, Appl math comp 214, 468-478 (2009) · Zbl 1170.65106 · doi:10.1016/j.amc.2009.04.015
[8]Chen, C.; Hsiao, C.: Haar wavelet method for solving lumped and distributed-parameter systems, IEE P-contr theor ap 144, 8794 (1997) · Zbl 0880.93014 · doi:10.1049/ip-cta:19970702
[9]Kilicman, A.; Zhour, Z. A. A. Al: Kronecker operational matrices for fractional calculus and some applications, Appl math comp 187, 250-265 (2007) · Zbl 1123.65063 · doi:10.1016/j.amc.2006.08.122
[10]Saadatmandi, A.; Dehghan, M.: A new operational matrix for solving fractional-order differential equations, Comp math appl 59, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[11]Li, Yuanlu; Zhao, Weiwei: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl math comput 216, 2276-2285 (2010) · Zbl 1193.65114 · doi:10.1016/j.amc.2010.03.063
[12]Li, Yuanlu: Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun nonl sci num sim 15, 2284-2292 (2010) · Zbl 1222.65087 · doi:10.1016/j.cnsns.2009.09.020
[13]Saeedi, H.; Moghadam, M. Mohseni; Mollahasani, N.; Chuev, G. N.: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order, Commun nonl sci num sim 16, 1154-1163 (2011) · Zbl 1221.65354 · doi:10.1016/j.cnsns.2010.05.036
[14]Saeedi, H.; Moghadam, M. Mohseni: Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets, Appl math comput 16, 1216-1226 (2011) · Zbl 1221.65140 · doi:10.1016/j.cnsns.2010.07.017
[15]Liu, N.; Lin, En-Bing: Legendre wavelet method for numerical solutions of partial differential equations, SIAM J math anal 29, 1040-1065 (1998)
[16]Yousefi, S. Ali: Legendre wavelets method for solving differential equations of Lane – Emden type, Appl math comp 181, 417-1422 (2006) · Zbl 1105.65080 · doi:10.1016/j.amc.2006.02.031
[17]Zheng, X.; Yang, X.: Techniques for solving integral and differential equations by Legendre wavelets, Int J syst sci 40, 1127-1137 (2009)
[18]Maleknejad, K.; Sohrabi, S.: Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets, Appl math comput 186, 836-843 (2007) · Zbl 1119.65126 · doi:10.1016/j.amc.2006.08.023
[19]Razzaghi, M.; Yousefi, S.: The Legendre wavelets operational matrix of integration, Int J syst sci 32, 495-502 (2001) · Zbl 1006.65151 · doi:10.1080/002077201300080910
[20]Khellat, F.; Yousefi, S. A.: The linear Legendre mother wavelets operational matrix of integration and its application, J Frank inst 343, 181-190 (2006) · Zbl 1127.65105 · doi:10.1016/j.jfranklin.2005.11.002
[21]Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II, J roy austral soc 13, 529-539 (1967)
[22]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006)
[23]Bai, Z. B.; Lü, H. S.: Positive solutions for boundary value problem of nonlinear fractional differential equation, J math anal appl 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[24]Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl math lett 22, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[25]Bagley, R. L.; Torvik, P. J.: On the appearance of the fractional derivative in the behavior of real materials, ASME J appl mech 51, 294-298 (1984) · Zbl 1203.74022 · doi:10.1115/1.3167615
[26]Ray, S. Saha; Bera, R. K.: Analytical solution of the bagley – torvik equation by Adomian decomposition method, Appl math comp 168, 398-410 (2005) · Zbl 1109.65072 · doi:10.1016/j.amc.2004.09.006
[27]Diethelm, K.; Ford, N. J.: Numerical solution of the bagley – torvik equation, Bit 42, 490-507 (2002) · Zbl 1035.65067
[28]Wang, Z. H.; Wang, X.: General solution of the bagley – torvik equation with fractional – order derivative, Commun nonlin sci num simul 15, 1279-1285 (2010) · Zbl 1221.34020 · doi:10.1016/j.cnsns.2009.05.069
[29]Kumar, P.; Agrawal, O. P.: An approximate method for numerical solution of fractional differential equations, Signal process 86, 2602-2610 (2006) · Zbl 1172.94436 · doi:10.1016/j.sigpro.2006.02.007
[30]Erturk, V. S.; Momani, S.; Odibat, Z.: Application of generalized differential transform method to multi-order fractional differential equations, Commun nonlin sci num simul 13, 1642-1654 (2008) · Zbl 1221.34022 · doi:10.1016/j.cnsns.2007.02.006
[31]Achar, B. N. Narahari; Hanneken, J. W.; Enck, T.; Clarke, T.: Dynamics of the fractional oscillator, Physica A 297, 361-367 (2001) · Zbl 0969.70511 · doi:10.1016/S0378-4371(01)00200-X
[32]Momani, S.; Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order, Chaos solitons fract 31, 1248-1255 (2007) · Zbl 1137.65450 · doi:10.1016/j.chaos.2005.10.068
[33]Arikoglu, A.; Ozkol, I.: Solution of fractional differential equations by using differential transform method, Chaos solitons fract 34, 1473-1481 (2007) · Zbl 1152.34306 · doi:10.1016/j.chaos.2006.09.004