zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reply to “Comments on ‘A one-step optimal homotopy analysis method for nonlinear differential equations”’. (English) Zbl 1222.65093
Summary: V. Marinca and N. Herişanu [ibid. 15, No. 11, 3735–3739 (2010; Zbl 1222.65089)] made some comments on our paper [ibid. 15, No. 8, 2026–2036 (2010; Zbl 1222.65091)] and pointed out “some fundamental mistakes and misinterpretations along with a false conclusion”. Unfortunately, Marinca’s comments are wrong. Here, we further reveal the essence of Marinca’s approach, and point out the reason why their method is indeed time-consuming: their method is nothing more than a traditional method in approximation theory. Numerical results for a given example and related MATHEMATICA code are given to support our view-points.
65L99Numerical methods for ODE
[1]Marinca, V.; Herisanu, N.: Comments on ”A one-step optimal homotopy analysis method for nonlinear differential equations”, Commun. nonlinear sci numer simul 15, 3735-3739 (2010) · Zbl 1222.65089 · doi:10.1016/j.cnsns.2010.01.038
[2]Niu, Z.; Wang, C.: A one-step optional homotopy analysis method for nonlinear differential equations, Commun nonlinear sci numer simul 15, 2026-2036 (2010) · Zbl 1222.65091 · doi:10.1016/j.cnsns.2009.08.014
[3]Marinca, V.; Herisanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int commun heat mass transfer 35, 710-715 (2008)
[4]Marinca, V.; Herisanu, N.; Nemes, I.: Optimal homotopy asymptotic method with application to thin film flow, Cent eur J phys 6, 648-653 (2008)
[5]Marinca, V.; Hersanu, N.; Bota, C.; Marinca, B.: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Appl math lett 22, 245-251 (2009) · Zbl 1163.76318 · doi:10.1016/j.aml.2008.03.019
[6]Yabushita, K.; Yamashita, M.; Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J phys A: math theor 40, 8403-8416 (2007)
[7]Liao, S. J.: An explicit, totally analytic approximate solution for Blasius viscous flow problems, Int J nonlinear mech 34, 759-778 (1999)
[8]Liao, S. J.: Beyond perturbation: introduction to homotopy analysis method, (2003)
[9]Liao, S. J.: Notes on the homotopy analysis method: some definitions and theorems, Commun nonlinear sci numer simul 14, 983-997 (2009) · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[10]Liao, S. J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun nonlinear sci numer simul 15, 2003-2016 (2010) · Zbl 1222.65088 · doi:10.1016/j.cnsns.2009.09.002