zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parallel Galerkin domain decomposition procedures based on the streamline diffusion method for convection-diffusion problems. (English) Zbl 1222.65106

The authors combine their procedures from the paper by K. Ma, T. Sun and D. Yang [Numer. Methods Partial Differ. Equations 25, No. 5, 1167–1194 (2009; Zbl 1173.65061)] with the finite difference streamline diffusion method (FDSD method) for time-dependent convection-diffusion problem on a general domain. The two approximation schemes established in Section 2 use an implicit FDSD method in the sub-domains and explicit flux calculations on the inter-domain boundary Γ. These two schemes are called integral mean parallel FDSD scheme (IM-PFDSD scheme) and extrapolation-integral mean parallel FDSD scheme (EIM-PFDSD scheme), respectively.

In Sections 3 and 4, artificial diffusion parameters δ are given and time step constraints ΔtCH 2 are derived. By analysis, the optimal order error estimate is derived in a norm which is stronger than the L 2 -norm for IM-PFDSD scheme and EIM-PFDSD scheme, respectively. This error estimate not only includes the optimal H 1 -norm error estimate, but also includes the error estimate along the streamline direction β·(u-U), which cannot be achieved by standard finite element method. For these purposes, new nonstandard elliptic projections are defined and analyzed, which include some terms on Γ. The EIM-PFDSD scheme has higher order accuracy with respect to H than the IM-PFDSD scheme, which means that the EIM-PFDSD scheme can use larger H than the IM-PFDSD scheme so that the time step constraint is weaker than that of the IM-PFDSD scheme and larger time step size can be used. Section 5 presents results of some numerical experiments, which confirm the theoretical results.

The novel procedures of this paper not only hold the advantages of that of the above quoted paper, but also hold the advantages of the FDSD method: good stability properties, higher accuracy and error estimates along the streamline direction. These advantages are not shared by previous known finite element methods.

65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65M06Finite difference methods (IVP of PDE)
65M55Multigrid methods; domain decomposition (IVP of PDE)
35K20Second order parabolic equations, initial boundary value problems
65M15Error bounds (IVP of PDE)
65Y05Parallel computation (numerical methods)
[1]Johnson, C.; Navert, U.: An analysis of some finite element methods for advection–diffusion problems, Analytical and numerical approaches to asymptotic problems in analysis (1981)
[2]Johnson, C.: Finite element methods for convection–diffusion problems, Computing methods in engineering and applied sciences (1981)
[3]Johnson, C.; Navert, U.; Pitkaranta, J.: Finite element methods for linear hyperbolic problems, Comput. methods appl. Mech. engrg. 45, 285-312 (1985) · Zbl 0526.76087 · doi:10.1016/0045-7825(84)90158-0
[4]Johnson, C.; Saranen, J.: Streamline diffusion methods for the incompressible Euler and Navier–Stokes equations, Math. comp. 47, 1-18 (1986) · Zbl 0609.76020 · doi:10.2307/2008079
[5]Hansbo, P.; Szepessy, A.: A velocity-pressure streamline diffusion finite element method for the incompressible Navier–Stokes equation, Comput. methods appl. Mech. engrg. 84, 175-192 (1990) · Zbl 0716.76048 · doi:10.1016/0045-7825(90)90116-4
[6]Sun, C.; Zhang, Y.; Wei, Q.: The streamline-diffusion F.E. Analysis for convection–diffusion problems, Math. numer. Sin. 18, No. 3, 253-260 (1996) · Zbl 0871.65089
[7]Sun, C.; Shen, H.: FDSD method for time-dependent convection–diffusion equations, Numer. math. J. chin. Univ. (Engl. Ser.) 7, No. 1, 72-85 (1998)
[8]Zhang, Q.; Sun, C.: FDSD method for nonlinear convection–diffusion equation, Math. numer. Sin. 20, No. 2, 213-224 (1998)
[9]Zhang, Q.; Sun, C.: Predictor–corrector FDSD method for nonlinear convection–diffusion equation, Math. numer. Sin. 21, No. 3, 363-374 (1999) · Zbl 0933.65097
[10]Sun, T. J.: Streamline-diffusion FEM for Sobolev equation with convection-dominated term, Appl. math. J. chinese univ. (English version) 16, 63-71 (2001) · Zbl 0981.65115 · doi:10.1007/s11766-001-0038-7
[11]Sun, T. J.; Ma, K. Y.: Finite difference streamline diffusion method for quasi-linear Sobolev equation with convection-dominated term, Numer. math. J. chin. Univ. (Engl. Ser.) 23, No. 4, 340-356 (2001) · Zbl 0995.65095
[12]Sun, T. J.; Yang, D. P.: The finite element difference streamline-diffusion methods for Sobolev equation with convection-dominated term, Appl. math. Comput. 125, No. 2–3, 325-345 (2002) · Zbl 1030.65095 · doi:10.1016/S0096-3003(00)00135-1
[13]Sun, T. J.; Ma, K. Y.: The finite element difference streamline-diffusion methods for the incompressible Navier–Stokes equations, Appl. math. Comput. 149, No. 2, 493-505 (2004) · Zbl 1037.76044 · doi:10.1016/S0096-3003(03)00156-5
[14]Park, J.: A primal mixed domain decomposition procedure based on the nonconforming streamline diffusion method, Appl. math. Comput. 50, 165-181 (2004) · Zbl 1054.65125 · doi:10.1016/j.apnum.2003.12.020
[15]Bramble, J. H.; Pasciak, J. E.; Xu, J.: Convergence estimates for product iterative methods with application to domain decomposition, Math. comp. 57, 1-21 (1991) · Zbl 0754.65085 · doi:10.2307/2938660
[16]Cai, X. C.: Multiplicative Schwarz methods for parabolic problem, SIAM J. Sci. comput. 15, 587-603 (1994)
[17]Dawson, C. N.; Dupont, T. F.: Explicit/implicit conservative Galerkin domain decomposition procedures for parabolic problems, Math. comp. 58, 21-35 (1992) · Zbl 0746.65072 · doi:10.2307/2153018
[18]Xu, J.: Iterative methods by space decomposition and subspace correction: a unifying approach, SIAM rev. 34, 581-613 (1992) · Zbl 0788.65037 · doi:10.1137/1034116
[19]Rui, H.; Yang, D. P.: Schwarz type domain decomposition algorithms for parabolic equations and error estimates, Acta math. Appl. sin. 14, 300-313 (1998) · Zbl 0934.35059 · doi:10.1007/BF02677411
[20]Tai, X. C.: A space decomposition method for parabolic equations, Numer. methods partial differential equations 14, 24-46 (1998) · Zbl 0891.65104 · doi:10.1002/(SICI)1098-2426(199801)14:1<27::AID-NUM2>3.0.CO;2-N
[21]Bramble, J. H.; Schatz, A. H.: Higher order local accuracy by averaging in the finite element method, Math. comp. 31, 94-111 (1977) · Zbl 0353.65064 · doi:10.2307/2005782
[22]Ma, K. Y.; Sun, T. J.; Yang, D. P.: Galerkin domain decomposition procedures for parabolic equation of general form on general domain, Numer. methods partial differential equations 25, No. 5, 1167-1194 (2009) · Zbl 1173.65061 · doi:10.1002/num.20394
[23]T.J. Sun, K.Y. Ma, Dynamic parallel Galerkin domain decomposition procedures with grid modification for parabolic equation, Internat. J. Numer. Methods Fluids (2010) doi:10.1002/fld.2330.
[24]Ma, K. Y.; Sun, T. J.: Galerkin domain decomposition procedures for parabolic equations on rectangular domain, Internat. J. Numer. methods fluids 62, No. 4, 449-472 (2010) · Zbl 1187.65109 · doi:10.1002/fld.2028
[25]Sun, T. J.; Ma, K. Y.: Parallel Galerkin domain decomposition procedures for wave equation, J. comput. Appl. math. 233, No. 8, 1850-1865 (2010) · Zbl 1184.65092 · doi:10.1016/j.cam.2009.09.022
[26]Ciarlet, P. G.: The finite element method for elliptic problems, (1978)
[27]Nitsche, J.: L-error analysis for finite elements, Mathematics of finite elements and applications III, 173-186 (1979) · Zbl 0449.65078
[28]Schatz, A. H.; Wahlbin, L. B.: Maximun norm estimates in the finite element method on plane polygonal domains, I, Math. comp. 32, 73-109 (1978) · Zbl 0382.65058 · doi:10.2307/2006259
[29]Schatz, A. H.; Wahlbin, L. B.: Maximun norm estimates in the finite element method on plane polygonal domains, II, Math. comp. 33, 485-492 (1979) · Zbl 0417.65053 · doi:10.2307/2006291
[30]Brenner, S. C.; Scott, L. R.: The mathematical theory of finite element methods, Texts in applied mathematics 15 (1996)