zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the solutions of time-fractional reaction-diffusion equations. (English) Zbl 1222.65115
Summary: A new application of generalized differential transform method (GDTM) has been used for solving time-fractional reaction-diffusion equations. To illustrate the reliability of the method, some examples are provided.
65M99Numerical methods for IVP of PDE
35K57Reaction-diffusion equations
35R11Fractional partial differential equations
[1]Murray, J. D.: Mathematical biology, (2003)
[2]Kuramoto, Y.: Chemical oscillations waves and turbulence, (2003)
[3]Wilhelmsson, H.; Lazzaro, E.: Reaction – diffusion problems in the physics of hot plasmas, (2001)
[4]Hundsdorfer, W.; Verwer, J. G.: Numerical solution of time dependent advection-diffusion-reaction equations, (2003)
[5]Perc, Matjaž: Spatial coherence resonance in excitable media, Phys rev E 72, 016207 (2005)
[6]Perc, Matjaž: Stochastic resonance on excitable small-world networks via a pacemaker, Phys rev E 76, 066203 (2007)
[7]Perc, Matjaž: Effects of small-world connectivity on noise-induced temporal and spatial order in neural media, Chaos soliton fract 31, No. 2, 280-291 (2007) · Zbl 1133.92007 · doi:10.1016/j.chaos.2005.10.018
[8]Gosaka, Marko; Marhla, Marko; Perc, Matjaž: Spatial coherence resonance in excitable biochemical media induced by internal noise, Biophys chem 128, No. 2 – 3, 210-214 (2007)
[9]Kenkre VM, Kuperman MN. Applicability of the Fisher equation to bacterial population dynamics. Phys Rev E 2003;67:051921.
[10]Bar, M.; Gottschalk, N.; Eiswirth, M.; Ertl, G.: Spiral waves in a surface reaction: model calculations, J chem phys 100, 1202-1214 (1994)
[11]Barkley, D.: A model for fast computer simulation of excitable media, Physica D 49, 61-70 (1991)
[12]Karma, A.: Meandering transition in two-dimensional excitable media, Phys rev lett 65, 2824-2828 (1990)
[13]Keener, J. P.: A geometrical theory for spiral waves in excitable media, SIAM J appl math 46, 1039-1056 (1986) · Zbl 0655.35046 · doi:10.1137/0146062
[14]Keener, J. P.: Mathematical physiology, interdisciplinary applied mathematics, (1998)
[15]Otani, N.: A primary mechanism for spiral wave meandering, Chaos 12, 829-842 (2002) · Zbl 1080.92504 · doi:10.1063/1.1503921
[16]Tyson, J.: What everyone should know about the Belousov – Zhabotinsky reaction?, Lecture notes in biomathematics 100, 569-587 (1994) · Zbl 0925.92068
[17]Fenton, F.; Cherry, E.; Hastings, H. M.; Evans, S. J.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity, Chaos 12, 852-892 (2002)
[18]Krinsky, V.; Pumir, A.: Models of defibrillation of cardiac tissue, Chaos 8, 188-203 (1998)
[19]Ramos JI. Numerical methods for one-dimensional reaction – diffusion equations arising in combustion theory. In: Chawla TC, editor. Annual review of numerical fluid mechanics and heat transfer, vol. 1. New York: Hemisphere; 1987. p. 150 – 261 [Chapter 4]. · Zbl 0635.65131
[20]Ramos, J. I.: Finite element methods for one-dimensional flame propagation problems, Numerical modeling in combustion, 3-131 (1993)
[21]Chen, Z.; Gumel, A. B.; Mickens, R. E.: Nonstandard discretizations of the generalized Nagumo reaction – diffusion equation, Numer meth partial differ eqns 19, 363-379 (2003) · Zbl 1019.65067 · doi:10.1002/num.10048
[22]Mickens, R. E.: A best finite-difference scheme for the Fisher equation, Numer meth partial differ eqns 10, 581-585 (1994) · Zbl 0810.65131 · doi:10.1002/num.1690100505
[23]Onyejekwe, O. O.: Green element procedures for transport accompanied by nonlinear reaction, Int J therm sci 42, 813-820 (2003)
[24]Uddin, R.: Comparison of the nodal integral method and nonstandard finite-difference schemes for the Fisher equation, SIAM J sci comput 22, 1926-1942 (2001)
[25]Ramos, J. I.: On diffusive and exponentially fitted techniques, Appl math comput 103, 69-96 (1999) · Zbl 0929.65057 · doi:10.1016/S0096-3003(98)10040-1
[26]Henry, B. I.; Langlands, T. A. M.; Wearne, S. L.: Turing pattern formation in fractional activator – inhibitor systems, Phys rev E 72, 026101 (2005)
[27]Henry, B. I.; Wearne, S. L.: Fractional reaction – diffusion, Physica A 276, 448-455 (2000)
[28]Henry, B. I.; Wearne, S. L.: Existence of Turing instabilities in a two-species fractional reaction – diffusion system, SIAM J appl math 62, No. 3, 870-887 (2002) · Zbl 1103.35047 · doi:10.1137/S0036139900375227
[29]Vlad, M. O.; Ross, J.: Systematic derivation of reaction – diffusion equations with distributed delays and relations to fractional reaction – diffusion equations and hyperbolic transport equations: application to the theory of neolithic transition, Phys rev E 66, 061908 (2002)
[30]Seki, K.; Wojcik, M.; Tachiya, M.: Fractional reaction – diffusion equation, J chem phys 119, 2165 (2003)
[31]Gafiychuk, V.; Datsko, B.: Pattern formation in a fractional reaction – diffusion system, Phys A stat mech appl 365, 300-306 (2006)
[32]Saxena RK, Mathai AM, Haubold HJ. Fractional reaction – diffusion equations. math.CA/0604473 v1 21; April 2006.
[33]Gafiychuk, V.; Datsko, B.: Stability analysis and oscillatory structures in time-fractional reaction – diffusion systems, Phys rev E 75, 055201-1-1-055201-1-4 (2007)
[34]Weitzner, H.; Zaslavsky, G. M.: Some applications of fractional equations, Commun nonlinear sci numer simulat 8, 273-281 (2003) · Zbl 1041.35073 · doi:10.1016/S1007-5704(03)00049-2
[35]Varea, C.; Barrio, R. A.: Travelling Turing patterns with anomalous diffusion, J phys condens matter 16, 5081-5090 (2004)
[36]Havlin, S.; Ben-Avraham, D.: Adv phys, Adv phys 36, 695 (1987)
[37]Sokolov, I. M.; Schmidt, M. G. W.; Sagués, F.: Reaction-subdiffusion equations, Phys rev E 73, 031102 (2006)
[38]Henry, B. I.; Langlands, T. A. M.; Wearne, S. L.: Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction – diffusion equations, Phys rev E 74, 031116 (2006)
[39]Yuste, S. B.; Acedo, L.: Some exact results for the trapping of subdiffusive particles in one dimension, Physica A 336, 334-346 (2004)
[40]Lewandowska, K. D.; Kosztolowicz, T.: Numerical study of subdiffusion equation, Acta phys polon B 38, 1847 (2006)
[41]Lewandowsk, Katarzyna D.: Numerical study of subdiffusion equation, Acta phys polon B 38, 1847-1854 (2007)
[42]Bouchaud, J. -P.; Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys rep 195, 127-293 (1990)
[43]Romero, A. H.; Sancho, J. M.: Brownian motion in short range random potentials, Phys rev E 58, 2833-2837 (1998)
[44]Klemm, A.; Metzler, R.; Kimmich, R.: Diffusion on random-site percolation clusters: theory and NMR microscopy experiments with model objects, Phys rev E 65, 021112 (2002)
[45]Fisher, R. A.: The wave of advance of advantageous genes, Ann eugene 7, 335-369 (1937) · Zbl 63.1111.04
[46]Malflict, W.: Solitary wave solutions of nonlinear wave equations, Am J phys 60, 650-654 (1992) · Zbl 1219.35246 · doi:10.1119/1.17120
[47]Frank, D. A.: Diffusion and heat exchange in chemical kinetics, (1955)
[48]Aronson, D. J.; Weinberg, H. F.: Nonlinear diffusion in population genetics combustion and never pulse propagation, (1988)
[49]Canosa, J.: Diffusion in nonlinear multiplication media, J math phys, 1862-1869 (1969)
[50]Tuckwell, H. C.: Introduction to theoretical neurobiology, (1988)
[51]Bramson, M. D.: Maximal displacement of branching Brownian motion, Commun pure appl math 31, 531-581 (1978) · Zbl 0361.60052 · doi:10.1002/cpa.3160310502
[52]Fitzhugh, R.: Impulse and physiological states in models of nerve membrane, Biophys J 1, 445-466 (1961)
[53]Nagumo, J. S.; Arimoto, S.; Yoshizawa, S.: An active pulse transmission line simulating nerve axon, Proc IRE 50, 2061-2070 (1962)
[54]Shih, M.; Momoniat, E.; Mahomed, F. M.: Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh – Nagumo equation, J math phys 46, 023503 (2005) · Zbl 1076.35052 · doi:10.1063/1.1839276
[55]Odibat, Z.; Momani, S.; Erturk, V. S.: Generalized differential transform method: for solving a space- and time-fractional diffusion-wave equation, Phys lett A 370, 379-387 (2007) · Zbl 1209.35066 · doi:10.1016/j.physleta.2007.05.083
[56]Momani, S.; Odibat, Z.; Erturk, V. S.: Generalized differential transform method: application to differential equations of fractional order, Appl math comput 19, 467-477 (2008) · Zbl 1141.65092 · doi:10.1016/j.amc.2007.07.068
[57]Odibat, Z.; Momani, S.: A generalized differential transform method for linear partial differential equations of fractional order, Appl maths lett 21, 194-199 (2008) · Zbl 1132.35302 · doi:10.1016/j.aml.2007.02.022
[58]Ayaz, F.: Solutions of the system of differential equations by differential transform method, Appl math comput 147, 547-567 (2004) · Zbl 1032.35011 · doi:10.1016/S0096-3003(02)00794-4
[59]Arikoglu, A.; Ozkol, I.: Solution of boundary value problems for integro-differential equations by using differential transform method, Appl math comput 168, 1145-1158 (2005) · Zbl 1090.65145 · doi:10.1016/j.amc.2004.10.009
[60]Bildik, N.; Konuralp, A.; Bek, F.; Kucukarslan, S.: Solution of different type of the partial differential equation by differential transform method and Adomian’s decomposition method, Appl math comput 172, 551-567 (2006) · Zbl 1088.65085 · doi:10.1016/j.amc.2005.02.037
[61]Hassan, I. H.: Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos soliton fract 36, 53-65 (2008) · Zbl 1152.65474 · doi:10.1016/j.chaos.2006.06.040
[62]Odibat, Z.; Bertelle, C.; Aziz-Alaoui, M. A.; Duchamp, G. H. E.: A multi-step differential transform method and application to non-chaotic and chaotic systems, Comput math appl 59, 1462-1472 (2010) · Zbl 1189.65170 · doi:10.1016/j.camwa.2009.11.005
[63]Odibat, Z.; Shawagfeh, N.: Generalized Taylor’s formula, Appl math comput 186, 286 (2007) · Zbl 1122.26006 · doi:10.1016/j.amc.2006.07.102
[64]Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II, J roy astral soc 13, 529-539 (1967)