zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Viscous flow over a shrinking sheet with a second order slip flow model. (English) Zbl 1222.76028
Summary: Viscous flow over a shrinking sheet is solved analytically using a newly proposed second order slip flow model. The closed solution is an exact solution of the full governing Navier–Stokes equations. The solution has two branches in a certain range of the parameters. The effects of the two slip parameters and the mass suction parameter on the velocity distribution are presented graphically and discussed. For certain combinations of the slip parameters, the wall drag force can decrease with the increase of mass suction. These results clearly show that the second order slip flow model is necessary to predict the flow characteristics accurately.
MSC:
76D05Navier-Stokes equations (fluid dynamics)
References:
[1]Altan, T.; Oh, S.; Gegel, H.: Metal forming fundamentals and applications, (1979)
[2]Fisher, E. G.: Extrusion of plastics, (1976)
[3]Tadmor Z, Klein I. Engineering principles of plasticating extrusion. Polymer science and engineering series. New York: Van Nostrand Reinhold; 1970.
[4]Sakiadis, B. C.: Boundary-layer behavior on continuous solid surface: I. Boundary-layer equations for two-dimensional and axisymmetric flow, J aiche 7, 26-28 (1961)
[5]Sakiadis, B. C.: Boundary-layer behavior on continuous solid surface: II. Boundary-layer equations for two-dimensional and axisymmetric flow, J aiche 7, 221-225 (1961)
[6]Tsou, F. K.; Sparrow, E. M.; Goldstain, R. J.: Flow and heat transfer in the boundary layer on a continuous moving surface, Int J heat mass transfer 10, 219-235 (1967)
[7]Crane, L. J.: Flow past a stretching plate, Z angew math phys 21, No. 4, 645 (1970)
[8]Banks, W. H. H.: Similarity solutions of the boundary-layer equations for a stretching wall, J mech theor appl 2, 375-392 (1983) · Zbl 0538.76039
[9]Dutta, B. K.; Roy, P.; Gupta, A. S.: Temperature field in flow over a stretching sheet with uniform heat flux, Int commun heat mass trans 12, 89-94 (1985)
[10]Grubka, L. J.; Bobba, K. M.: Heat transfer characteristics of a continuous stretching surface with variable temperature, ASME J heat transfer 107, 248-250 (1985)
[11]Chen, C. K.; Char, M. I.: Heat transfer of a continuous stretching surface with suction and blowing, J math anal appl 135, 568-580 (1988) · Zbl 0652.76062 · doi:10.1016/0022-247X(88)90172-2
[12]Ali, M. E.: On thermal boundary layer on a power law stretched surface with suction or injection, Int J heat fluid flow 16, 280-290 (1995)
[13]Elbashbeshy, E. M. A.: Heat transfer over a stretching surface with variable surface heat flux, J phys D appl phys 31, 1951-1954 (1998)
[14]Magyari, E.; Keller, B.: Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, J phys D appl phys 32, No. 5, 577-585 (1999)
[15]Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur J mech B fluids 19, No. 1, 109-122 (2000) · Zbl 0976.76021 · doi:10.1016/S0997-7546(00)00104-7
[16]Magyari, E.; Ali, M. E.; Keller, B.: Heat and mass transfer characteristics of the self-similar boundary-layer flows induced by continuous surfaces stretched with rapidly decreasing velocities, Heat mass transfer 38, No. 1 – 2, 65-74 (2001)
[17]Liao, S. J.: A new branch of solutions of boundary-layer flows over a stretching flat plate, Int J heat mass transfer 49, No. 12, 2529-2539 (2005) · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[18]Liao, S. J.: A new branch of solution of boundary-layer flows over a permeable stretching plate, Int J nonlinear mech 42, 819-830 (2007) · Zbl 1200.76046 · doi:10.1016/j.ijnonlinmec.2007.03.007
[19]Fang, T.; Zhang, J.: Flow between two stretchable disks, Int commun heat mass transfer 35, No. 8, 892-895 (2008)
[20]Fang, T.: Flow over a stretchable disk, Phys fluids 19, 128105 (2007) · Zbl 1182.76239 · doi:10.1063/1.2823572
[21]Wang, C. Y.: Exact solutions of the steady state Navier – Stokes equations, Ann rev fluid mech 23, 159-177 (1991) · Zbl 0717.76033
[22]Miklavcic, M.; Wang, C. Y.: Viscous flow due to a shrinking sheet, Quart appl math 64, No. 2, 283-290 (2006) · Zbl 1169.76018
[23]Fang, T.: Boundary layer flow over a shrinking sheet with power-law velocity, Int J heat mass transfer 51, No. 25/26, 5838-5843 (2008) · Zbl 1157.76010 · doi:10.1016/j.ijheatmasstransfer.2008.04.067
[24]Fang, T.; Zhang, J.: Closed-form exact solutions of MHD viscous flow over a shrinking sheet, Commun nonlinear sci numer simulat 14, No. 7, 2853-2857 (2009) · Zbl 1221.76142 · doi:10.1016/j.cnsns.2008.10.005
[25]Fang, T.; Zhang, J.; Yao, S.: Viscous flow over an unsteady shrinking sheet with mass transfer, Chin phys lett 26, No. 1, 014703 (2009)
[26]Fang, T.; Liang, W.; Lee, C. F.: A new solution branch for the Blasius equation – a shrinking sheet problem, Comput math appl 56, No. 12, 3088-3095 (2008) · Zbl 1165.76324 · doi:10.1016/j.camwa.2008.07.027
[27]Fang T, Zhang J. Heat transfer over a shrinking sheet – an analytical solution. Acta Mech. doi:10.1007/s00707-009-0183-2; 2009.
[28]Hayat, T.; Abbas, Z.; Sajid, M.: On the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet, J appl mech trans ASME 74, No. 6, 1165-1171 (2007)
[29]Sajid, M.; Hayat, T.; Javed, T.: MHD rotating flow of a viscous fluid over a shrinking surface, Nonlinear dyn 51, No. 1 – 2, 259-265 (2008) · Zbl 1170.76366 · doi:10.1007/s11071-007-9208-3
[30]Sajid, M.; Hayat, T.: The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet, Chaos, solitons & fractals (2007) · Zbl 1197.76100 · doi:10.1016/j.chaos.2007.06.019
[31]Gal-El-Hak, M.: The fluid mechanics of micro-devices – the freeman scholar lecture, ASME trans J fluids eng 121, 5-33 (1999)
[32]Shidlovskiy, V. P.: Introduction to the dynamics of rarefied gases, (1967)
[33]Pande, G. C.; Goudas, C. L.: Hydromagnetic reyleigh problem for a porous wall in slip flow regime, Astrophys space sci 243, 285-289 (1996) · Zbl 0921.76191 · doi:10.1007/BF00644701
[34]Yoshimura, A.; Prudhomme, R. K.: Wall slip corrections for Couette and parallel disc viscometers, J rheol 32, 53-67 (1988)
[35]Martin MJ, Boyd ID. Blasius boundary layer solution with slip flow conditions. In: AIP conference proceedings, rarefied gas dynamics: 22nd international symposium, vol. 585, 2001. p. 518 – 23.
[36]Andersson, H. I.: Slip flow past a stretching surface, Acta mech 158, 121-125 (2002) · Zbl 1013.76020 · doi:10.1007/BF01463174
[37]Wang, C. Y.: Flow due to a stretching boundary with partial slip-an exact solution of the Navier – Stokes equations, Chem eng sci 57, No. 17, 3745-3747 (2002)
[38]Fang, T.; Lee, C. F.: A moving-wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate, Appl math lett 18, No. 5, 487-495 (2005) · Zbl 1074.76042 · doi:10.1016/j.aml.2004.08.006
[39]Fang, T.; Lee, C. F.: Exact solutions of incompressible Couette flow with porous walls for slightly rarefied gases, Heat mass transfer 42, No. 3, 255-262 (2006)
[40]Fang, T.; Zhang, J.; Yao, S.: Slip MHD viscous flow over a stretching sheet – an exact solution, Commun nonlinear sci numer simulat 14, No. 11, 3731-3737 (2009)
[41]Wang, C. Y.: Stagnation slip flow and heat transfer on a moving plate, Chem eng sci 61, No. 23, 7668-7672 (2006)
[42]Wang, C. Y.: Stagnation flow on a cylinder with partial slip – an exact solution of the Navier – Stokes equations, IMA J appl math 72, No. 3, 271-277 (2007) · Zbl 1130.76029 · doi:10.1093/imamat/hxm009
[43]Wang, C. Y.: Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear anal real world appl 10, No. 1, 375-380 (2009) · Zbl 1154.76330 · doi:10.1016/j.nonrwa.2007.09.013
[44]Aziz, A.: Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition, Commun nonlinear sci numer simulat 15, No. 3, 573-580 (2010)
[45]Wu, L.: A slip model for rarefied gas flows at arbitrary Knudsen number, Appl phys lett 93, 253103 (2008)
[46]Fukui, S.; Kaneko, R.: A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems, ASME J tribol 112, 78-83 (1990)