zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized crane flows of micropolar fluids. (English) Zbl 1222.76039
Summary: The hydromagnetic flow induced by a continuous stretching surface in a quiescent micropolar fluid is revisited. It is shown that the problem admits an exact analytical solution for arbitrary differentiable stretching velocities when the surface is permeable and a suitable lateral suction/injection of the fluid is applied. This result generalizes the classical Crane-type solutions which hold for linear stretching velocities only.
MSC:
76D10Boundary-layer theory, separation and reattachment, etc. (incompressible viscous fluids)
76A05Non-Newtonian fluids
References:
[1]Hayat, T.; Javed, T.; Abbas, Z.: MHD flow of a micropolar fluid near a stagnation-point towards a non-linear stretching surface, Nonlinear anal: real world appl 10, 1514-1526 (2009) · Zbl 1160.76055 · doi:10.1016/j.nonrwa.2008.01.019
[2]Abo-Eldahab, E. M.; Ghonaim, A. F.: Convective heat transfer in an electrically conducting micropolar fluid at a stretching surface with uniform free stream, Appl math comput 137, 323-336 (2003) · Zbl 1129.76357 · doi:10.1016/S0096-3003(02)00128-5
[3]Eldabe, N. T.; Ouaf, M. E. M.: Chebyshev finite difference method for heat and mass transfer in a hydromagnetic flow of a micropolar fluid past a stretching surface with ohmic heating and viscous dissipation, Appl math comput 177, 561-571 (2006)
[4]Seddeek, M. A.; Odda, S. N.; Akl, M. Y.; Abdelmeguid, M. S.: Analytical solution for the effect of radiation on flow of a magneto-micropolar fluid past a continuously moving plate with suction and blowing, Comput mater sci 45, 423-428 (2009)
[5]Kumar, L.: Finite element analysis of combined heat and mass transfer in hydromagnetic micropolar flow along a stretching sheet, Comput mater sci 46, 841-848 (2009)
[6]Heruska, M. W.; Watson, L. T.; Sankara, K. K.: Micropolar flow past a stretching sheet, Comp fluids 14, 117-129 (1986) · Zbl 0589.76017 · doi:10.1016/0045-7930(86)90004-6
[7]Agarwal, R. S.; Bhargava, R.; Balaji, A. V. S.: Finite element solution of flow and heat transfer of a micropolar fluid over a stretching sheet, Int J eng sci 27, 1421-1428 (1989) · Zbl 0693.76010 · doi:10.1016/0020-7225(89)90065-7
[8]Chen, C. K.; Hsu, T. H.: Heat transfer of a thermomicropolar fluid past of a porous stretching sheet, Comp math appl 21, 37-45 (1991) · Zbl 0714.76005 · doi:10.1016/0898-1221(91)90049-A
[9]Kelson, N. A.; Desseaux, A.: Effect of surface conditions on flow of a microp├╝olar fluid driven by a porous stretching sheet, Int J eng sci 39, 1881-1897 (2001)
[10]Bhargava, R.; Kumar, L.; Takhar, H. S.: Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet, Int J eng sci 41, 2161-2178 (2003) · Zbl 1211.76068 · doi:10.1016/S0020-7225(03)00209-X
[11]Nazar, R.; Amin, N.; Filip, D.; Pop, I.: Stagnation point flow of a micropolar fluid towards a stretching sheet, Int J nonlinear mech 39, 1227-1235 (2004)
[12]Crane, L. J.: Flow past a stretching plate, Z angew math phys 21, 645-647 (1970)
[13]Gupta, P. S.; Gupta, A. S.: Heat and mass transfer on a stretching sheet with suction or blowing, Can J chem eng 55, 744-746 (1977)
[14]Weidman, P. D.; Magyari, E.: Generalized crane flow induced by continuous surfaces stretching with arbitrary velocities, Acta mech 209, 353-362 (2010)