zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. (English) Zbl 1222.76075
Summary: A homotopy analysis method (HAM) is employed to investigate the unsteady magnetohydrodynamic (MHD) flow induced by a stretching surface. An incompressible viscous fluid fills the porous space. The heat and mass transfer analyses are also studied. Series solutions have been constructed. Comparative study between the series and exact solutions is also given. The effects of embedded parameters in the considered problems are examined in detail.
MSC:
76M25Other numerical methods (fluid mechanics)
76W05Magnetohydrodynamics and electrohydrodynamics
65M99Numerical methods for IVP of PDE
76S05Flows in porous media; filtration; seepage
References:
[1]Cortell, R.: Viscous flow and heat transfer over a nonlinearly stretching sheet, Appl math comput 184, 864-873 (2007) · Zbl 1112.76022 · doi:10.1016/j.amc.2006.06.077
[2]Cortell, R.: Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field, Int J heat mass transfer 49, 1851-1856 (2006) · Zbl 1189.76778 · doi:10.1016/j.ijheatmasstransfer.2005.11.013
[3]Liao, S. J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud appl math 117, 2529-2539 (2006) · Zbl 1145.76352 · doi:10.1111/j.1467-9590.2006.00354.x
[4]Liao, S. J.: An analytical solution of unsteady boundary layer flows caused by an impulsively stretched plate, Commun nonlinear sci numer simulat 11, 326-339 (2006) · Zbl 1078.76022 · doi:10.1016/j.cnsns.2004.09.004
[5]Ali, M. E.; Magyari, E.: Unsteady fluid and heat flow induced by a submerged stretching surface while its steady motion is slowed down gradually, Int J heat mass transfer 50, 188-195 (2007) · Zbl 1104.80001 · doi:10.1016/j.ijheatmasstransfer.2006.06.021
[6]Xu, H.: An explicit analytic solution for connective heat transfer in an electrically conducting fluid at stretching surface with uniform free stream, Int J eng sci 43, 859-874 (2005) · Zbl 1211.76159 · doi:10.1016/j.ijengsci.2005.01.005
[7]Kumari, M.; Nath, G.: Analytical solution of unsteady three-dimensional MHD boundary layer flow and heat transfer due to impulsively stretched plane surface, Commun nonlinear sci numer simulat 14, 3339-3350 (2009) · Zbl 1221.76226 · doi:10.1016/j.cnsns.2008.11.011
[8]Hayat, T.; Abbas, Z.; Javed, T.: Mixed convection flow of a micro-polar fluid over a nonlinearly stretching sheet, Phys lett A 372, 637-647 (2008) · Zbl 1217.76014 · doi:10.1016/j.physleta.2007.08.006
[9]Sajid, M.; Hayat, T.: Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet, Int commn heat mass transfer 35, 347-356 (2008)
[10]Sajid, M.; Hayat, T.; Pop, I.: Three-dimensional flow over a stretching surface in a viscoelstic fluid, Non-linear anal: real world appl 9, 1811-1822 (2008) · Zbl 1154.76315 · doi:10.1016/j.nonrwa.2007.05.010
[11]Xu, H.; Liao, S. J.; Pop, I.: Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate, Eur J mech B 26, 15-27 (2007) · Zbl 1105.76061 · doi:10.1016/j.euromechflu.2005.12.003
[12]Liao, S. J.: Beyond perturbation: introduction to homotopy analysis method, (2003)
[13]Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl math comput 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[14]Liao, S. J.; Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations, Stud appl math 119, 297-354 (2007)
[15]Liao, S. J.: Notes on the homotopy analysis method: some definitions and theorems, Commun nonlinear sci numer simulat 14, 983-997 (2009) · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[16]Liao, S. J.: A general approach to get series solution of non-similarity boundary layer flows, Commun nonlinear sci numer simulat 14, 2144-2159 (2009) · Zbl 1221.76068 · doi:10.1016/j.cnsns.2008.06.013
[17]Abbasbandy, S.: Solitary wave solutions to the Kuramoto – Sivashinsky by means of homotopy analysis method, Nonlinear dyn 52, 35-40 (2008) · Zbl 1173.35646 · doi:10.1007/s11071-007-9255-9
[18]Abbasbandy, S.: Soliton solutions for the 5th-order KdV equation with the homotopy analysis method, Nonlinear dyn 51, 83-87 (2008) · Zbl 1170.76317 · doi:10.1007/s11071-006-9193-y
[19]Abbasbandy, S.: Solitary wave solutions to the modified form of Camassa – Holm equation by means of the homotopy analysis method, Chaos soliton fract 39, 428-435 (2009) · Zbl 1197.65199 · doi:10.1016/j.chaos.2007.04.007
[20]Abbasbandy, S.: Homotopy analysis method for generalized benjamin – bona – Mahony equation, Zamp 59, 51-62 (2008) · Zbl 1139.35325 · doi:10.1007/s00033-007-6115-x
[21]Bataineh, A. S.; Noorani, M. S. M.; Hashim, I.: On a new reliable modification of homotopy analysis method, Commun nonlinear sci numer simulat 14, 409-423 (2009) · Zbl 1221.65195 · doi:10.1016/j.cnsns.2007.10.007
[22]Hashim, I.; Abdulaziz, O.; Momani, S.: Homotopy analysis method for fractional ivps, Commun nonlinear sci numer simulat 14, 674-684 (2009) · Zbl 1221.65277 · doi:10.1016/j.cnsns.2007.09.014
[23]Ahmad, I.; Sajid, M.; Hayat, T.; Ayub, M.: Unsteady axisymmetric flow of a second grade fluid over a radially stretching sheet, Comput math appl 56, 1351-1357 (2008) · Zbl 1155.76304 · doi:10.1016/j.camwa.2008.03.002
[24]Hayat, T.; Abbas, Z.; Pop, I.: Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid, Int J heat mass transfer 51, 3200-3206 (2008) · Zbl 1144.80315 · doi:10.1016/j.ijheatmasstransfer.2007.05.032
[25]Hayat, T.; Abbas, Z.: Heat transfer analysis on MHD flow of a second grade fluid in a channel with porous medium, Chaos soliton fract 38, 556-567 (2008) · Zbl 1146.76670 · doi:10.1016/j.chaos.2006.12.004
[26]Hayat, T.; Abbas, Z.; Sajid, M.: Heat and mass transfer analysis on the flows of a second grade fluid in the presence of chemical reaction, Phys lett A 372, 2400-2408 (2008) · Zbl 1220.76009 · doi:10.1016/j.physleta.2007.10.102
[27]Sajid, M.; Hayat, T.: The application of homotopy analysis method for thin film flow of a third order fluid, Chaos soliton fract 38, 506-515 (2008) · Zbl 1146.76588 · doi:10.1016/j.chaos.2006.11.034
[28]Sajid, M.; Ahmad, I.; Hayat, T.; Ayub, M.: Unsteady flow and heat transfer of a second grade fluid over a stretching sheet, Commun nonlinear sci numer simulat 14, 96-108 (2009) · Zbl 1221.76022 · doi:10.1016/j.cnsns.2007.07.014
[29]Sajid, M.; Javed, T.; Hayat, T.: MHD rotating flow of a viscous fluid over a shrinking surface, Non-linear dyn 51, 259-265 (2008) · Zbl 1170.76366 · doi:10.1007/s11071-007-9208-3
[30]Sajid, M.; Abbas, Z.; Hayat, T.: Homotopy analysis for boundary layer flow of a micro-polar fluid through a porous channel, Appl math model 33, 4120-4125 (2009) · Zbl 1205.76201 · doi:10.1016/j.apm.2009.02.006