zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Use of Adomian decomposition method in the study of parallel plate flow of a third grade fluid. (English) Zbl 1222.76079
Summary: Adomian’s decomposition method is used to solve non-linear differential equations which arise in fluid dynamics. We study basic flow problems of a third grade non-Newtonian fluid between two parallel plates separated by a finite distance. The technique of Adomian decomposition is successfully applied to study the problem of a non-Newtonian plane Couette flow, fully developed plane Poiseuille flow and plane Couette–Poiseuille flow. The results obtained show the reliability and efficiency of this analytical method. Numerical solutions are also obtained by solving non-linear ordinary differential equations using Chebyshev spectral method. We present a comparative study between the analytical solutions and numerical solutions. The analytical results are found to be in good agreement with numerical solutions which reveals the effectiveness and convenience of the Adomian decomposition method.
MSC:
76M25Other numerical methods (fluid mechanics)
76A05Non-Newtonian fluids
65M99Numerical methods for IVP of PDE
References:
[1]Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations, Math comput model 13, No. 7, 287-299 (1992) · Zbl 0713.65051 · doi:10.1016/0895-7177(90)90125-7
[2]Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994)
[3]Babolian, E.; Vahidi, A. R.; Cordshooli, G. H. Asadi: Solving differential equations by decomposition method, Appl math comput 167, 1150-1155 (2005) · Zbl 1082.65560 · doi:10.1016/j.amc.2004.07.023
[4]Bildik, N.; Bayramoglu, H.: The solution of two dimensional nonlinear differential equation by the Adomian decomposition method, Appl math comput 163, 519-524 (2005) · Zbl 1067.65106 · doi:10.1016/j.amc.2004.03.029
[5]Cherruault, Y.; Adomian, G.: Decomposition method: a new proof of convergence, Math comput model 18, No. 12, 103-106 (1993) · Zbl 0805.65057 · doi:10.1016/0895-7177(93)90233-O
[6]Dehghan, M.: Application of the Adomian decomposition method for two-dimensional parabolic equation subject to nonstandard boundary specifications, Appl math comput 157, 549-560 (2004) · Zbl 1054.65105 · doi:10.1016/j.amc.2003.08.098
[7]Pamuk, S.: Solution of the porous media equation by Adomian’s decomposition method, Phys lett A 334, 184-188 (2005) · Zbl 1194.65148 · doi:10.1016/j.physleta.2005.06.068
[8]Siddiqui, A. M.; Ahmed, M.; Islam, S.; Ghori, Q. K.: Homotopy analysis of Couette and poisuille flows for a fourth grade fluid, Acta mech 180, No. 1-4 (2005) · Zbl 1080.76008 · doi:10.1007/s00707-005-0260-0
[9]Wazwaz, A. M.: A reliable technique for solving the weakly singular second-kind Volterra-type integral equations, Appl math comput 80, 287-299 (1996) · Zbl 0880.65122 · doi:10.1016/0096-3003(95)00279-0
[10]Luo, Xing-Guo; Wu, Qing-Biao; Zhang, Bing-Quan: Revisit on partial solutions in the Adomian decomposition method: solving heat and wave equations, J math anal appl 321, 353-363 (2006) · Zbl 1103.65106 · doi:10.1016/j.jmaa.2005.08.043
[11]Nadeem, S.; Akbar, N.: Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: application of Adomian decomposition method, Commun nonlinear sci numer simul 14, 3844-3855 (2009)
[12]Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamic analysis, Int J eng sci 33, No. 5, 689-729 (1995) · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[13]Truesdell, C.; Noll, W.: The non-linear fields theories of mechanics, (2004)
[14]Rajagopal, K. R.: On the stability of third-grade fluids, Arch mech 32, No. 6, 867 (1980) · Zbl 0462.76003
[15]Fosdick, R. L.; Rajagopal, K. R.: Thermodynamics and stability of fluids of third grade, Proc R soc lond A 339, 351-377 (1980) · Zbl 0441.76002 · doi:10.1098/rspa.1980.0005
[16]Trefethen, L. N.: Spectral methods in Matlab, (2000)
[17]Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T. A.: Spectral methods in fluid dynamics, (1993)
[18]Siddiqui, A. M.; Zeb, A.; Ghori, Q. K.; Benharbit, A. M.: Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates, Chaos solitons fract 36, 182-192 (2008) · Zbl 1152.80327 · doi:10.1016/j.chaos.2006.06.037