zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative damping. (English) Zbl 1222.93006
Summary: This paper studies the distributed formation control problem for multiple fractional-order systems under dynamic interaction with absolute/relative damping. In the context of this paper, formation control means that a group of systems reaches the desired state deviations via a local interaction. We first study a formation control algorithm in the case of a directed dynamic network topology. Convergence conditions on both the network topology and the fractional orders are presented. When the fractional-order α satisfies α(0,1)(1+2 n), sufficient conditions on the network topology are given to ensure the formation control. Then we propose fractional-order formation control algorithms with absolute/relative damping and study the conditions on the network topology and the control gains such that the formation control will be achieved under a directed fixed network topology. The final equilibria are also given explicitly. Finally, several simulation examples are presented as a proof of concept.
MSC:
93A14Decentralized systems
93C15Control systems governed by ODE
34A08Fractional differential equations
References:
[1]J. Lin, A.S. Morse, B.D.O. Anderson, The multi-agent rendezvous problem, in: Proceedings of the IEEE Conference on Decision and Control, Maui, Hawaii, 2003, pp. 1508–1513.
[2]Sinha, A.; Ghose, D.: Generalization of linear cyclic pursuit with application to rendezvous of multiple autonomous agents, IEEE transactions on automatic control 51, No. 11, 1819-1824 (2006)
[3]Dimarogonas, D. V.; Kyriakopoulos, K. J.: On the rendezvous problem for multiple nonholonomic agents, IEEE transactions on automatic control 52, No. 5, 916-922 (2007)
[4]Smith, S. L.; Broucke, M. E.; Francis, B. A.: Curve shortening and the rendezvous problem for mobile autonomous robots, IEEE transactions on automatic control 52, No. 6, 1154-1159 (2007)
[5]Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 988-1001 (2003)
[6]Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, No. 9, 1520-1533 (2004)
[7]Ren, W.; Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE transactions on automatic control 50, No. 5, 655-661 (2005)
[8]Xiao, L.; Boyd, S.: Fast linear iterations for distributed averaging, Systems and control letters 53, No. 1, 65-78 (2004) · Zbl 1157.90347 · doi:10.1016/j.sysconle.2004.02.022
[9]Cao, M.; Morse, A. S.; Anderson, B. D. O.: Reaching a consensus in a dynamically changing environment: A graphical approach, SIAM journal on control and optimization 47, No. 2, 575-600 (2008) · Zbl 1157.93514 · doi:10.1137/060657005
[10]Fax, J. A.; Murray, R. M.: Information flow and cooperative control of vehicle formations, IEEE transactions on automatic control 49, No. 9, 1465-1476 (2004)
[11]Lafferriere, G.; Williams, A.; Caughman, J.; Veerman, J. J. P.: Decentralized control of vehicle formations, Systems and control letters 54, No. 9, 899-910 (2005) · Zbl 1129.93303 · doi:10.1016/j.sysconle.2005.02.004
[12]Ren, W.; Atkins, E. M.: Distributed multi-vehicle coordinated control via local information exchange, International journal of robust and nonlinear control 17, No. 10–11, 1002-1033 (2007)
[13]Xie, G.; Wang, L.: Consensus control for a class of networks of dynamic agents, International journal of robust and nonlinear control 17, No. 10–11, 941-959 (2007)
[14]Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory, IEEE transactions on automatic control 51, No. 3, 401-420 (2006)
[15]Tanner, H. G.; Jadbabaie, A.; Pappas, G. J.: Flocking in fixed and switching networks, IEEE transactions on automatic control 52, No. 5, 863-868 (2007)
[16]Moshtagh, N.; Jadbabaie, A.: Distributed geodesic control laws for flocking of nonholonomic agents, IEEE transactions on automatic control 52, No. 4, 681-686 (2007)
[17]Su, H.; Wang, X.; Lin, Z.: Flocking of multi-agents with a virtual leader, IEEE transactions on automatic control 54, No. 2, 293-307 (2009)
[18]Y. Cao, Y. Li, W. Ren, Y. Chen, Distributed coordination algorithms for multiple fractional-order systems, in: Proceedings of the IEEE Conference on Decision and Control, Cancun, Mexico, 2008, pp. 2920–2925.
[19]Bagley, R. L.; Torvik, P. J.: Fractional calculus–A different approach to the analysis of viscoelastically damped structures, AIAA journal 21, No. 5, 741-748 (1983) · Zbl 0514.73048 · doi:10.2514/3.8142
[20]L., R.; Torvik, Bagley: A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of theology 27, No. 3, 201-210 (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[21]Bagley, R. L.; Torvik, P. J.: On the fractional calculus model of viscoelastic behavior, Journal of theology 30, No. 1, 133-155 (1986) · Zbl 0613.73034 · doi:10.1122/1.549887
[22]Kozlovsky, Y.; Cohen, I.; Golding, I.; Ben-Jacob, E.: Lubricating bacteria model for branching growth of bacterial colonies, Physical review E 59, No. 6, 7025-7035 (1999)
[23]Cohen, I.; Golding, I.; Ron, I. G.; Ben-Jacob, E.: Biofluiddynamics of lubricating bacteria, Mathematical methods in the applied sciences 24, No. 17–18, 1429-1468 (2001) · Zbl 1097.76618 · doi:10.1002/mma.190
[24]Y. Cao, W. Ren, Distributed coordination of fractional-order systems with extensions to directed dynamic networks and absolute/relative damping, in: Proceedings of the IEEE Conference on Decision and Control, Shanghai, China, 2009, pp. 7125–7130.
[25]I. Podlubny, L. Dorcak, I. Kostial, On fractional derivatives, fractional-order dynamic systems and PIλDμ-controllers, in: Proceedings of the IEEE Conference on Decision and Control, San Diego, CA, 1997, pp. 889–894.
[26]Podlubny, I.: Fractional differential equations, (1999)
[27]Y. Li, Y. Chen, Fractional order linear quadratic regulator, in: IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, Beijing, China, 2008, pp. 363–368.
[28]Ren, W.: On consensus algorithms for double-integrator dynamics, IEEE transactions on automatic control 53, No. 6, 1503-1509 (2008)
[29]W. Ren, Collective motion from consensus with Cartesian coordinate coupling–Part II: Double-integrator dynamics, in: Proceedings of the IEEE Conference on Decision and Control, Cancun, Mexico, 2008, pp. 1012–1017.
[30]Agaev, R.; Chebotarev, P.: The matrix of maximum out forests of a digraph and its applications, Automation and remote control 61, 1424-1450 (2000) · Zbl 1057.05038