zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On designing H fault estimator for switched nonlinear systems of neutral type. (English) Zbl 1222.93064
Summary: This paper deals with the problem of fault estimation for a class of switched nonlinear systems of neutral type. The nonlinearities are assumed to satisfy global Lipschitz conditions and appear in both the state and measured output equations. By employing a switched observer-based fault estimator, the problem is formulated as an H filtering problem. Sufficient delay-dependent existence conditions of the H Fault Estimator (H -FE) are given in terms of certain matrix inequalities based on the average dwell time approach. In addition, by using a cone complementarity algorithm, solutions to the observer gain matrices are obtained by solving a set of Linear Matrix Inequalities (LMIs). A numerical example is provided to demonstrate the effectiveness of the proposed approach.
MSC:
93B36H -control
93C30Control systems governed by other functional relations
93C10Nonlinear control systems
34K40Neutral functional-differential equations
References:
[1]Chen, J.; Patton, R. J.: Observer-based fault detection and isolation: robustness and applications, Control eng pract 5, No. 5, 671-682 (1997)
[2]Guerra, R. M.; Diop, S.: Diagnosis of nonlinear systems using an unknown-input observer: an algebraic and differential approach, IEE proc control theor appl 151, No. 1, 130-135 (2004)
[3]Chen WT, Saif M. Fault detection and isolation based on novel unknown input observer design. Proceedings of the 2006 american control conference, Minnesota, U.S.A.: 2006. pp. 5129 – 5134.
[4]Nguang SK, Zhang P, Ding SX. Parity based fault estimation for nonlinear systems: an LMI approach. Proceedings of the 2006 american control conference, Minnesota, U.S.A.: 2006. pp. 5141 – 5146.
[5]Zhang, P.; Ye, H.; Ding, S. X.; Wang, G. Z.; Zhou, D. H.: On the relationship between parity space and H2 approaches to fault detection, Syst control lett 55, No. 2, 94-100 (2006) · Zbl 1129.93368 · doi:10.1016/j.sysconle.2005.05.006
[6]Zhong, M. Y.; Ding, Q.; Shi, P.: Parity space-based fault detection for Markovian jump systems, Int J syst sci 40, No. 4, 421-428 (2009) · Zbl 1172.93405 · doi:10.1080/00207720802556237
[7]Jiang, T.; Khorasani, K.; Tafazoli, S.: Parameter estimation-based fault detection, isolation and recovery for nonlinear satellite models, IEEE trans control syst technol 16, No. 4, 799-808 (2008)
[8]Pouliezos, A.; Stavrakakis, G.; Lefas, C.: Fault detection using parameter estimation, Qual reliab eng int 5, No. 4, 283-290 (2007)
[9]P.M. Frank, S.X. Ding, B. Koppen. Current developments in the theory of FDI. Proceedings of the IFAC symposium safeprocess 2000, Budapest, Hungary: 2000. pp. 16-27.
[10]Zhong, M. Y.; Ding, S. X.; Lame, J.; Wang, H. B.: An LMI approach to design robust fault detection filter for uncertain LTI systems, Automatica 39, No. 3, 543-550 (2003) · Zbl 1036.93061 · doi:10.1016/S0005-1098(02)00269-8
[11]Isermann, R.: Fault diagnosis systems: an introduction from fault detection to fault tolerance, (2006)
[12]Ding, S. X.: Model-based fault diagnosis techniques design schemes, algorithms, and tools, (2008)
[13]Mondal, S.; Chakraborty, G.; Bhattacharyya, K.: Robust unknown input observer for nonlinear systems and its application to fault detection and isolation, J dyn syst meas control 130, No. 4, 044503 (2008)
[14]Wu, Q.; Saif, M.: Robust fault detection and diagnosis in a class of nonlinear systems using a neural sliding mode observer, Int J syst sci 38, No. 11, 881-899 (2007) · Zbl 1160.93007 · doi:10.1080/00207720701628889
[15]Chen, W.; Saif, M.: Observer-based strategies for actuator fault detection, isolation and estimation for certain class of uncertain nonlinear systems, IET control theor appl 1, No. 6, 1672-1680 (2007)
[16]Leith, D. J.; Shorten, R. N.; Leithead, W. E.; Mason, O.; Curran, P.: Issues in the design of switched linear control systems: a benchmark study, Int J adapt control signal process 17, No. 2, 103-118 (2003) · Zbl 1016.93026 · doi:10.1002/acs.741
[17]Savkin, A. V.; Evans, R. J.: Hybrid dynamical systems, controller and sensor switching problems, (2002)
[18]Sun, Z. D.; Ge, S. S.: Switched linear systems: control and design, (2005)
[19]Zhai GS, Lin H, Kim Y. L2 gain analysis for switched systems with continuous-time and discrete-time subsystems. Proceedings of the SICE 2004 annual conference, Sapporo, Japan: 2004. pp. 658 – 663.
[20]Cong S, Qian W, Fei SM. On exponential stability of switched systems with delay: multiple Lyapunov functions approach. Proceedings of the 26th chinese control conference, Zhangjiajie, China: 2007. pp. 664 – 668.
[21]Liu, J.; Liu, X. Z.: Delay-dependent robust control for uncertain switched systems with time-delay, Nonlinear anal: hybrid syst 2, No. 1, 81-95 (2008) · Zbl 1157.93362 · doi:10.1016/j.nahs.2007.04.001
[22]Wu, L. G.; Zheng, W. X.: Weighted H model reduction for linear switched systems with time-varying delay, Automatica 45, No. 1, 186-193 (2009) · Zbl 1154.93326 · doi:10.1016/j.automatica.2008.06.024
[23]Kim, S.; Campbell, S. A.; Liu, X. Z.: Stability of a class of linear switching systems with time delay, IEEE trans circuits systems-I: regular papers 53, No. 2, 384-393 (2006)
[24]Chen, Y.; Xue, A. K.; Lu, R. Q.; Zhou, S. S.: On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations, Nonlinear anal 68, No. 8, 2464-2470 (2008) · Zbl 1147.34352 · doi:10.1016/j.na.2007.01.070
[25]Chen, B.: Memory state feedback guaranteed cost control for neutral delay systems, Int J innovative comput inform control 2, No. 2, 293-303 (2006)
[26]Liu, D. Y.; Zhong, S. M.; Liu, X. Z.; Huang, Y. Q.: Stability analysis for uncertain switched neutral systems with discrete time-varying delay: a delay-dependent method, Math comput simul 80, No. 2, 436-448 (2009) · Zbl 1185.34105 · doi:10.1016/j.matcom.2009.08.002
[27]Li LL, Dimirovski GM, Zhao J. Robust Hnbsp; control for neutral uncertain switched nonlinear systems using multiple Lyapunov functions. Proceedings of the 17th international federation of automatic control, Seoul, Korea: 2008. pp. 3493 – 3498.
[28]Xiong, L. L.; Zhong, S. M.; Ye, M.; Wu, S. L.: New stability and stabilization for switched neutral control systems, Chaos soliton fract 42, No. 3, 1800-1811 (2009) · Zbl 1198.93187 · doi:10.1016/j.chaos.2009.03.093
[29]Lien, C. H.; Yu, K. W.; Chung, Y. J.; Lin, Y. F.; Chung, L. Y.; Chen, J. D.: Exponential stability analysis for uncertain switched neutral systems with interval-time-varying state delay, Nonlinear anal: hybrid syst 3, No. 3, 334-342 (2009) · Zbl 1192.34085 · doi:10.1016/j.nahs.2009.02.010
[30]Liu, D. Y.; Liu, X. Z.; Zhong, S. M.: Delay-dependent robust stability and control synthesis for uncertain switched neutral systems with mixed delays, Appl math comput 202, No. 2, 828-839 (2008) · Zbl 1143.93020 · doi:10.1016/j.amc.2008.03.028
[31]Zhang, Y. P.; Liu, X. Z.; Zhu, H.; Zhong, S. M.: Stability analysis and control synthesis for a class of switched neutral systems, Appl math comput 190, No. 2, 1258-1266 (2007) · Zbl 1117.93062 · doi:10.1016/j.amc.2007.02.011
[32]Wu, L. G.; Wang, Z. D.: Guaranteed cost control of switched systems with neutral delay via dynamic output feedback, Int J syst sci 40, No. 7, 717-728 (2009)
[33]Zhong, M. Y.; Han, Q. L.: Fault-tolerant master-slave synchronization for Lur’e systems using time-delay feedback control, IEEE trans circuits syst-I: regular papers 56, No. 7, 1391-1404 (2009)
[34]Liberzon, D.: Switching in systems and control, (2003)
[35]Han, Q. L.: Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays, IMA J math control inform 20, No. 4, 371-386 (2003) · Zbl 1046.93039 · doi:10.1093/imamci/20.4.371
[36]Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems, Int J control 74, No. 14, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[37]Ghaoui, L. H.; Oustry, F.; Aitrami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE trans autom control 42, No. 8, 1171-1176 (1997) · Zbl 0887.93017 · doi:10.1109/9.618250