zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control. (English) Zbl 1222.93108
Summary: A fractional-order energy resources demand-supply system is proposed. A projective synchronization scheme is proposed as an extension on the synchronization scheme of Z. M. Odibat, N. Corson, M. A. Aziz-Alaoui and C. Bertelle [Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 1, 81–97 (2010; Zbl 1183.34095)]. The scheme is applied to achieve projective synchronization of the chaotic fractional-order energy resource demand-supply systems. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.
MSC:
93C15Control systems governed by ODE
34A08Fractional differential equations
93B52Feedback control
93B05Controllability
References:
[1]Odibat, Z.; Corson, N.; Aziz-Alaoui, M.; Bertelle, C.: Synchronization of chaotic fractional-order systems via linear control, Int J bifurcation chaos 20, 81-97 (2010) · Zbl 1183.34095 · doi:10.1142/S0218127410025429
[2]Oldham, K.; Spanier, J.: The fractional calculus, (1974)
[3]Samko, S.; Kilbas, A.; Marichev, O.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[4]Wang, S.; Xu, M.: Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear anal-real 10, 1087-1096 (2009) · Zbl 1167.76311 · doi:10.1016/j.nonrwa.2007.11.027
[5]Jiang, X.; Xu, M.; Qi, H.: The fractional diffusion model with an absorption term and modified fick’s law for non-local transport processes, Nonlinear anal-real 10, 262-269 (2009) · Zbl 1196.37120 · doi:10.1016/j.nonrwa.2008.10.057
[6]Liu, Y.; Ma, J.: Exact solutions of a generalized multi-fractional nonlinear diffusion equation in radical symmetry, Commun theor phys 52, 857-861 (2009) · Zbl 1182.35067 · doi:10.1088/0253-6102/52/5/20
[7]Asheghan, M.; Beheshti, M.; Tavazoei, M.: Robust synchronization of perturbed Chen’s fractional-order chaotic systems, Commun nonlinear sci numer simul 16, 1044-1051 (2011) · Zbl 1221.34007 · doi:10.1016/j.cnsns.2010.05.024
[8]Shahiri, M.; Ghaderi, R.; Ranjbar, N.; Hosseinnia, S.; Momani, S.: Chaotic fractional-order coullet system: synchronization and control approach, Commun nonlinear sci numer simul 15, 665-674 (2010) · Zbl 1221.37222 · doi:10.1016/j.cnsns.2009.05.054
[9]Meral, F.; Royston, T.; Magin, R.: Fractional calculus in viscoelasticity: an experimental study, Commun nonlinear sci numer simul 15, 939-945 (2010) · Zbl 1221.74012 · doi:10.1016/j.cnsns.2009.05.004
[10]Sabatier, J.; Cugnet, M.; Laruelle, S.; Grugeon, S.; Sahut, B.; Oustaloup, A.: A fractional order model for lead-acid battery crankability estimation, Commun nonlinear sci numer simul 15, 1308-1317 (2010)
[11]Hamamci, S.; Koksal, M.: Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems, Comput math appl 59, 1621-1629 (2010) · Zbl 1189.93125 · doi:10.1016/j.camwa.2009.08.049
[12]Bouafoura, M.; Braiek, N.: PIλdμ controller design for integer and fractional plants using piecewise orthogonal functions, Commun nonlinear sci numer simul 15, 1267-1278 (2010) · Zbl 1221.93073 · doi:10.1016/j.cnsns.2009.05.047
[13]Ahmed, E.; Elgazzar, A. S.: On fractional order differential equations model for nonlocal epidemics, Physica A 379, 607-614 (2007)
[14]Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J math anal appl 325, 542-553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[15]Matouk, A.: Chaos, feedback control and synchronization of a fractional-order modified autonomous van der Pol – Duffing circuit, Commun nonlinear sci numer simul 16, 975-986 (2011) · Zbl 1221.93227 · doi:10.1016/j.cnsns.2010.04.027
[16]Ahmad, W.; El-Khazali, R.: Fractional-order dynamical models of love, Chaos soliton fract 33, 1367-1375 (2007) · Zbl 1133.91539 · doi:10.1016/j.chaos.2006.01.098
[17]Song, L.; Xu, S.; Yang, J.: Dynamical models of happiness with fractional order, Commun nonlinear sci numer simul 15, 616-628 (2010) · Zbl 1221.93234 · doi:10.1016/j.cnsns.2009.04.029
[18]Chen, W.: Nonlinear dynamics and chaos in a fractional-order financial system, Chaos soliton fract 36, 1305-1314 (2008)
[19]Deng, W.; Li, C.: Chaos synchronization of the fractional Lü system, Physica A 353, 61-72 (2005)
[20]Wang, X.; Song, J.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun nonlinear sci numer simul 14, 3351-3357 (2009) · Zbl 1221.93091 · doi:10.1016/j.cnsns.2009.01.010
[21]Wang, X.; He, Y.: Projective synchronization of fractional order chaotic system based on linear separation, Phys lett A 372, 435-441 (2008) · Zbl 1217.37035 · doi:10.1016/j.physleta.2007.07.053
[22]Wang, X.; Wang, M.: Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos 17, 033106 (2007) · Zbl 1163.37382 · doi:10.1063/1.2755420
[23]Bhalekar, S.; Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control, Commun nonlinear sci numer simul 15, 3536-3546 (2010) · Zbl 1222.94031 · doi:10.1016/j.cnsns.2009.12.016
[24]Wu, X.; Lu, H.; Shen, S.: Synchronization of a new fractional-order hyperchaotic system, Phys lett A 373, 2329-2337 (2009) · Zbl 1231.34091 · doi:10.1016/j.physleta.2009.04.063
[25]Wu, X.; Chen, G.; Cai, J.: Chaos synchronization of the master – slave generalized Lorenz systems via linear state error feedback control, Physica D 229, 52-80 (2007) · Zbl 1131.34040 · doi:10.1016/j.physd.2007.03.014
[26]Sun, M.; Tian, L.; Fu, Y.: An energy resources demand – supply system and its dynamical analysis, Chaos soliton fract 32, No. 1, 168-180 (2007) · Zbl 1133.91524 · doi:10.1016/j.chaos.2005.10.085
[27]Sun, M.; Tian, L.; Fu, Y.; Qian, W.: Dynamics and adaptive synchronization of the energy resource system, Chaos soliton fract 31, 879-888 (2007) · Zbl 1149.34032 · doi:10.1016/j.chaos.2005.10.035
[28]Sun, M.; Tian, L.; Jia, Q.: Adaptive control and synchronization of a four-dimensional energy resources system with unknown parameters, Chaos soliton fract 39, 1943-1949 (2009) · Zbl 1197.93100 · doi:10.1016/j.chaos.2007.06.117
[29]Li, X.; Xu, W.; Li, R.: Chaos synchronization of the energy resource system, Chaos soliton fract 40, 642-652 (2009) · Zbl 1197.93127 · doi:10.1016/j.chaos.2007.08.008
[30]Huang, C.; Cheng, K.; Yan, J.: Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties, Commun nonlinear sci numer simul 14, 2784-2792 (2009)
[31]Wang, Z.: Chaos synchronization of an energy resource system based on linear control, Nonlinear anal-real 11, 3336-3343 (2010) · Zbl 1216.34061 · doi:10.1016/j.nonrwa.2009.11.026
[32]Wang, Z.; Shi, X.: Synchronization of a four-dimensional energy resource system via linear control, Commun nonlinear sci numer simul 16, 463-474 (2011) · Zbl 1221.93238 · doi:10.1016/j.cnsns.2010.03.008
[33]Deng, W.: Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear anal-theor 72, 1768-1777 (2010) · Zbl 1182.26009 · doi:10.1016/j.na.2009.09.018
[34]Podlubny, I.: Fractional differential equations, (1999)
[35]Matignon D. Stability results for fractional differential equations with applications to control processing. In Proc IMACS. IEEE-SMC; Lille, France, 1996, p. 963 – 968.
[36]Wang, X.; He, Y.: Projective synchronization of fractional order chaotic system based on linear separation, Phys lett A 372, 435-441 (2008) · Zbl 1217.37035 · doi:10.1016/j.physleta.2007.07.053
[37]Diethelm, K.; Ford, N.; Freed, A.: A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[38]Diethelm, K.; Ford, N.; Freed, A.: Detailed error analysis for a fractional Adams method, Numer alg 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be