zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronizing the noise-perturbed Genesio chaotic system by sliding mode control. (English) Zbl 1222.93121
Summary: We investigate the chaos synchronization between Genesio chaotic systems with noise perturbation. It is proved theoretically that the synchronization between such noise-perturbed systems can be implemented by choosing a suitable sliding mode surface and designing a sliding mode controller. Numerical simulations show the effectiveness of the theoretical analysis. This proposed method is important because it can be applied to many other chaotic systems.
93C40Adaptive control systems
37D45Strange attractors, chaotic dynamics
[1]L., M. Pecora; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821 (1990) · Zbl 0938.37019
[2]Chen, G.; Dong, X.: On feedback control of chaotic continuous-systems, IEEE trans circuit syst I 40, 591-601 (1993) · Zbl 0800.93758 · doi:10.1109/81.244908
[3]Song, X.; Yu, X.; Chen, G.; Tian, Y.: Time delayed repetitive learning control for chaotic systems, Int J bifurcation chaos 12, 1057 (2002) · Zbl 1051.93528 · doi:10.1142/S0218127402004905
[4]Feng, J.; Chen, S.; Wang, C.: Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification, Chaos soliton fractal 26, 1163 (2005) · Zbl 1122.93401 · doi:10.1016/j.chaos.2005.02.027
[5]Itoh, M.; Yang, T.; Chua, Lo: Conditions for impulsive synchronization of chaotic and hyperchaotic systems, Int J bifurcation chaos 11, 551 (2001) · Zbl 1090.37520 · doi:10.1142/S0218127401002262
[6]Ming-Jyi, J.; Chieh-Li, C.; Cha’o-Kuang, C.: Sliding mode control of hyperchaos in Rōssler systems, Chaos solitons fractals 14, 1465-1476 (2002)
[7]Tao, Y.; Hui, H.: Synchronization chaotic dynamics with uncertainties based on a sliding mode control design, Phys rev E 65, 210-217 (2002)
[8]Zhang, Q.; Chen, S.; Hu, Y.: Synchronizing the noise-perturbed unified chaotic system by sliding mode control, Physica A 371, 317-324 (2006)
[9]Yan, J. J.; Yang, Y. S.; Chiang, T. Y.; Chen, C. Y.: Robust synchronization of unified chaotic systems via sliding mode control, Chaos solitons fractals 34, 947-954 (2007) · Zbl 1129.93489 · doi:10.1016/j.chaos.2006.04.003
[10]Kong, C.; Chen, S.: Sliding mode control of a class of generalized Lorenz systems, Chin phys B 8, 91-97 (2009)
[11]Arjmand, M. T.; Sadeghian, H.; Salarieh, H.; Alasty, A.: Chaos control in AFM systems using nonlinear delayed feedback via sliding mode control, Nonlinear anal: hybrid syst 2, 993-1001 (2008) · Zbl 1218.34073 · doi:10.1016/j.nahs.2007.10.002
[12]Genesio, R.; Tesi, A.: A harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems, Automatica 28, 531-548 (1992) · Zbl 0765.93030 · doi:10.1016/0005-1098(92)90177-H
[13]Chen, M.; Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos solitons fractals 17, 709 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[14]Feng, J. W.; Xu, C.; Zhang, W. Q.: Adaptive synchronization of uncertain Genesio chaotic systems based on parameter identification, Int J nonlinear sci numer simul 8, 419-424 (2007)
[15]Hassan KK. Nonlinear system. Englewood Cliffs, NJ; 1996.