zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive sliding mode control in a novel class of chaotic systems. (English) Zbl 1222.93124
Summary: We propose a robust adaptive sliding mode control strategy for an introduced class of uncertain chaotic systems. Using the sliding mode control technique and based on Lyapunov stability theory, a time varying sliding surface is determined and an adaptive gain of the robust control law will be tuned to stabilize the new chaotic class. Unlike many well-known methods of the sliding mode control, no knowledge on the bound of uncertainty and disturbance is required. Simulation results are demonstrated for several chaotic examples to illustrate the effectiveness of the proposed adaptive sliding mode control scheme.
93C40Adaptive control systems
34H10Chaos control (ODE)
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
93B12Variable structure systems
[1]Vicha, T.; Dohnal, M.: Qualitative feature extractions of chaotic systems, Chaos solitons fract 38, 364-373 (2008) · Zbl 1155.37318 · doi:10.1016/j.chaos.2008.01.008
[2]Yu, W.: Passive equivalence of chaos in Lorenz system, IEEE trans circuits syst I 46, 876-878 (1999)
[3]Xu, W. G.; Shen, H. Z.; Hu, D. P.; Lei, A. Z.: Impulse tuning of Chua chaos, Int J eng sci 43, 75-280 (2009)
[4]Ueta, T.; Chen, G.: Bifurcation analysis of Chen’s attractor, Int J bifurc chaos 10, 1917-1931 (2000) · Zbl 1090.37531 · doi:10.1142/S0218127400001183
[5]Rafikov, M.; Balthazar, J. M.: On an optimal control design for Rössler system, Phys lett A 333, 241-245 (2004) · Zbl 1123.49300 · doi:10.1016/j.physleta.2004.10.032
[6]Arman, K. -B.; Kia, F.; Naser, P.; Henry, L.: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun nonlinear sci numer simulat 14, No. 3, 863-879 (2009) · Zbl 1221.94049 · doi:10.1016/j.cnsns.2007.11.011
[7]Xiao, M.; Cao, J.: Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control, Commun nonlinear sci numer simulat 14, No. 8, 3379-3388 (2009) · Zbl 1221.34165 · doi:10.1016/j.cnsns.2008.12.023
[8]El-Gohary, A.: Chaos and optimal control of equilibrium states of tumor system with drug, Chaos solitons fract 41, No. 1, 425-435 (2009) · Zbl 1198.37121 · doi:10.1016/j.chaos.2008.02.003
[9]Huang, C. -F.; Cheng, K. -H.; Yan, J. -J.: Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties, Commun nonlinear sci numer simulat 14, No. 6, 2784-2792 (2009)
[10]Xiang, T.; Wong, K. -W.; Liao, X.: An improved chaotic cryptosystem with external key, Commun nonlinear sci numer simulat 13, No. 9, 1879-1887 (2008) · Zbl 1221.94070 · doi:10.1016/j.cnsns.2007.04.017
[11]Cai, N.; Jing, Y.; Zhang, S.: Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Commun nonlinear sci numer simulat 15, No. 6, 1613-1620 (2010) · Zbl 1221.37211 · doi:10.1016/j.cnsns.2009.06.012
[12]Wang, H.; Han, Z. -Z.; Xie, Q. -Y.; Zhang, W.: Sliding mode control for chaotic systems based on LMI, Commun nonlinear sci numer simulat 14, No. 4, 1410-1417 (2009) · Zbl 1221.93049 · doi:10.1016/j.cnsns.2007.12.006
[13]Roopaei, M.; Jahromi, M. Zolghadri; Jafari, S.: Adaptive gain fuzzy sliding mode control for the synchronization of nonlinear chaotic gyros, Chaos: an interdisciplinary J nonlinear sci 19, No. 1, 013125-013129 (2009)
[14]Roopaei, M.; Jahromi, M. Zolghadri: Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control, Chaos: an interdisciplinary J nonlinear sci 18, No. 3, 033133-033139 (2008)
[15]Roopaei, M.; Zolghadri, M.; Meshksar, S.: Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems, Commun nonlinear sci numer simulat 14, No. 9 – 10, 3670-3681 (2009) · Zbl 1221.93157 · doi:10.1016/j.cnsns.2009.01.029
[16]Dadras, S.: Sliding mode control for uncertain new chaotic dynamical system, Chaos solitons fract 41, No. 4, 1857-1862 (2009)
[17]Liu, C.; Liu, T.; Liu, L.; Liu, K.: A new chaotic attractor, Chaos solitons fract 22, 1031-1338 (2004)
[18]Vincent, U. E.: Synchronization of identical and non-identical 4-D chaotic systems using active control, Chaos solitons fract 37, 1057-1065 (2008) · Zbl 1153.37359 · doi:10.1016/j.chaos.2006.10.005