zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some improved criteria for global robust exponential stability of neural networks with time-varying delays. (English) Zbl 1222.93175
Summary: Some sufficient conditions for global robust exponential stability of interval neural networks with time-varying delays are presented. It is shown that our results include some counterparts of the previous literature. On basis of the obtained results, some linear matrix inequality (LMI) criteria are derived. Moreover, three numerical examples and a simulation are given to show the effectiveness of the obtained results.
MSC:
93D09Robust stability of control systems
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
93C23Systems governed by functional-differential equations
References:
[1]Arik, S.; Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks, IEEE trans circuits syst I, fundam theory appl 47, 571-574 (2000) · Zbl 0997.90095 · doi:10.1109/81.841859
[2]Chen, T.: Global convergence of delayed dynamical system, IEEE trans neural networks 12, 1532-1536 (2001)
[3]Peng, J.; Qiao, H.; Xu, Z.: A new approach to stability of neural networks with time-varying delays, Neural networks 15, 95-103 (2002)
[4]Zhang, J.: Globally exponential stability of neural networks with variable delays, IEEE trans circuits syst I, fundam theory appl 50, 288-291 (2003)
[5]Huang, H.; Ho, Daniel W. C.; Cao, J.: Analysis of global exponential stability and periodic solutions of neural networks with time-varing delays, Neural networks 18, 161-170 (2005) · Zbl 1078.68122 · doi:10.1016/j.neunet.2004.11.002
[6]Yuan, K.; Cao, J.: An analysis of global asymptotic stability of delayed Cohen – Grossberg neural networks via nonsmooth analysis, IEEE trans circuits syst I, reg papers 52, No. 9, 1854-1861 (2005)
[7]Huang, L.; Huang, C.; Liu, B.: Dynamics of a class of cellular neural networks with time-varying delays, Phys lett A 345, 330-344 (2005)
[8]Huang, H.; Cao, J.; Qu, Y.: Global robust stability of delayed neural networks with a class of general activation functions, J comput syst sci 69, 688-700 (2004) · Zbl 1076.68060 · doi:10.1016/j.jcss.2004.05.002
[9]Sun, C.; Feng, C.: Global robust exponential stability of interval neural networks with delays, Neural process lett 17, 107-115 (2003)
[10]Cao, J.; Chen, T.: Global exponentially robust stability and periodicity of delayed neural networks, Chaos solitons fract 22, 957-963 (2004) · Zbl 1061.94552 · doi:10.1016/j.chaos.2004.03.019
[11]Chen, T.; Rong, L.: Robust global exponential stability of Cohen – Grossberg neural networks with time delays, IEEE trans neural networks 15, No. 1, 203-206 (2004)
[12]Cao, J.; Huang, D.; Qu, Y.: Global robust stability of delayed recurrent neural networks, Chaos solitons fract 23, 221-229 (2005) · Zbl 1075.68070 · doi:10.1016/j.chaos.2004.04.002
[13]Arik, S.: Global robust stability analysis of neural networks with discrete time delays, Chaos solitons fract 26, 1407-1414 (2005) · Zbl 1122.93397 · doi:10.1016/j.chaos.2005.03.025
[14]Cao, J.; Wang, J.: Global asymptotic and robust stability of recurrent neural networks with time delays, IEEE trans circuits syst I, fundam theory appl 52, No. 2, 417-426 (2005)
[15]Chen, A.; Cao, J.; Huang, L.: Global robust stability of interval cellular neural networks with time-varying delays, Chaos solitons fract 23, 787-799 (2005) · Zbl 1101.68752 · doi:10.1016/j.chaos.2004.05.029
[16]Ozcan, N.; Arik, S.: An analysis of global robust stability of neural networks with discrete time delays, Phys lett A 359, 445-450 (2006) · Zbl 1193.92004 · doi:10.1016/j.physleta.2006.06.055
[17]Ozcan, N.; Arik, S.: Global robust stability analysis of neural networks with multiple time delays, IEEE trans circuits syst I, reg papers 53, No. 1, 166-176 (2006)
[18]Zhang, J.: Global exponential stability of interval neural networks with variable delays, Appl math lett 19, 1222-1227 (2006) · Zbl 1180.34083 · doi:10.1016/j.aml.2006.01.005
[19]Singh, V.: Global robust stability of delayed neural networks: estimating upper limit of norm of delayed connection weight matrix, Chaos solitons fract 32, 259-263 (2007) · Zbl 1138.93042 · doi:10.1016/j.chaos.2005.10.104
[20]Singh, V.: On global robust stability of interval Hopfield neural networks with delay, Chaos solitons fract 33, No. 4, 1183-1188 (2007) · Zbl 1151.34333 · doi:10.1016/j.chaos.2006.01.121
[21]Qi, H.: New sufficient conditions for global robust stability of delayed neural networks, IEEE trans circuits syst I, reg papers 54, No. 5, 1131-1141 (2007)
[22]Yu, W.; Yao, L.: Global robust stability of neural networks with time varying delays, J comput appl math 206, No. 2, 679-687 (2007) · Zbl 1115.37017 · doi:10.1016/j.cam.2006.08.017
[23]Zhang, H.; Wang, Z.; Liu, D.: Robust exponential stability of recurrent neural networks with multiple time-varying delays, IEEE trans circuits syst II: Exp briefs 54, No. 8, 730-734 (2007)
[24]Shen, T.; Zhang, Y.: Improved global robust stability criteria for delayed neural networks, IEEE trans circuits syst II: Exp briefs 54, No. 8, 715-719 (2007)
[25]Singh, V.: Improved global robust stability for interval-delayed Hopfield neural networks, Neural process lett 27, No. 3, 257-265 (2008)
[26]Singh, V.: Improved global robust stability of interval delayed neural networks via split interval: generalizations, Appl math comput 206, No. 1, 290-297 (2008) · Zbl 1168.34357 · doi:10.1016/j.amc.2008.08.036
[27]Shao, J.; Huang, T.: A note on global robust stability criteria for interval delayed neural networks via an LMI approach, IEEE trans circuits syst II: Exp briefs 55, 1198-1202 (2008)
[28]Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M.: LMI control toolbox-for use with Matlab, (1995)
[29]Horn, R. A.; Johnson, C. R.: Matrix analysis, (1986)
[30]Zhou, D.; Cao, J.: Globally exponential stability conditions for cellular neural networks with time-varying delays, Appl math comput 131, 487-496 (2002) · Zbl 1034.34093 · doi:10.1016/S0096-3003(01)00162-X