zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of hyperchaotic systems via linear control. (English) Zbl 1222.93191
Summary: Synchronization of hyperchaotic system is discussed. Based on the stability theory in the cascade system, a simple linear feedback law is presented to realize synchronization of hyperchaotic systems. Simulation results are given to illustrate the effectiveness of the proposed method.
93D15Stabilization of systems by feedback
37D45Strange attractors, chaotic dynamics
34H10Chaos control (ODE)
37N35Dynamical systems in control
93D25Input-output approaches to stability of control systems
[1]Udaltsov, V. S.; Goedgebuer, J. P.; Larger, L.; Cuenot, J. B.; Levy, P.; Rhodes, W. T.: Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information, Opt spectrosc 95, No. 1, 114-118 (2003)
[2]Cafagna, D.; Grassi, G.: New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring, Int J bifurcat chaos 13, No. 10, 2889-2903 (2003) · Zbl 1057.37026 · doi:10.1142/S0218127403008284
[3]Sugawara, T.; Tachikawa, M.; Tsukamoto, T.: Observation of synchronization in laser chaos, Phys rev lett 72, No. 22, 3502-3505 (1994)
[4]Wang, H.; Han, Z. Z.; Zhang, W.; Xie, Q. Y.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF, Nonlinear anal: real world appl 10, No. 5, 715-722 (2009) · Zbl 1167.37332 · doi:10.1016/j.nonrwa.2007.10.025
[5]Wang, H.; Han, Z. Z.; Xie, Q. Y.; Zhang, W.: Sliding mode control for chaotic systems based on LMI, Commun nonlinear sci numer simul 14, No. 4, 1410-1417 (2009) · Zbl 1221.93049 · doi:10.1016/j.cnsns.2007.12.006
[6]Wang, H.; Han, Z. Z.; Xie, Q. Y.; Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters, Nonlinear dyn 55, No. 4, 323-328 (2009) · Zbl 1170.70401 · doi:10.1007/s11071-008-9364-0
[7]Wang, H.; Han, Z. Z.; Zhang, W.; Xie, Q. Y.: Chaotic synchronization and secure communication based on descriptor observer, Nonlinear dyn 57, 69-73 (2009) · Zbl 1176.94005 · doi:10.1007/s11071-008-9420-9
[8]Wang, H.; Han, Z. Z.; Xie, Q. Y.; Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF, Nonlinear anal: real world appl 10, No. 5, 2842-2849 (2009) · Zbl 1183.34072 · doi:10.1016/j.nonrwa.2008.08.010
[9]Wang, H.; Han, Z. Z.; Xie, Q. Y.; Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control, Commun nonlinear sci numer simul 14, No. 6, 2728-2733 (2009) · Zbl 1221.37225 · doi:10.1016/j.cnsns.2008.08.013
[10]Park, J. H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos solitons fract 26, No. 3, 959-964 (2005) · Zbl 1093.93537 · doi:10.1016/j.chaos.2005.02.002
[11]Yassen, M. T.: Synchronization hyperchaos of hyperchaotic systems, Chaos solitons fract 37, No. 2, 465-475 (2008)
[12]Marat, Rafikov; Manoel, Balthazar Jose: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Commun nonlinear sci numer simul 13, 1246-1255 (2008) · Zbl 1221.93230 · doi:10.1016/j.cnsns.2006.12.011
[13]Wang, B.; Wen, G. J.; Xie, K.: On the synchronization of a hyperchaotic system based on adaptive method, Phys lett A 372, 3015-3020 (2008) · Zbl 1220.37028 · doi:10.1016/j.physleta.2008.01.019
[14]Lu, J. Q.; Cao, J. D.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos 15, No. 4, 043901 (2005) · Zbl 1144.37378 · doi:10.1063/1.2089207
[15]Cao, J. D.; Lu, J. Q.: Adaptive synchronization of neural networks with or without time-varying delay, Chaos 16, No. 1, 013133 (2006) · Zbl 1144.37331 · doi:10.1063/1.2178448
[16]Jankovic, M.; Sepulchre, R.; Kokotovic, P. V.: Constructive Lyapunov stabilization of nonlinear cascade systems, IEEE trans automat control 41, 1723-1735 (1996) · Zbl 0869.93039 · doi:10.1109/9.545712
[17]Arcak, M.; Angeli, D.; Sontag, E. A.: Unifying integral ISS framework for stability of nonlinear cascades, SIAM J control optimization 40, 1888-1904 (2002) · Zbl 1014.93040 · doi:10.1137/S0363012901387987
[18]Sontag, E. D.: On the input-to-state stability property, Eur J control 1, 24-36 (1995) · Zbl 1177.93003 · doi:http://www.mit.edu/~esontag/FTP_DIR/iss-ejc.pdf
[19]Sontag, E. D.; Wang, Y.: New characterizations of the input to state stability property, IEEE trans automat control 41, 1283-1294 (1996) · Zbl 0862.93051 · doi:10.1109/9.536498
[20]Khalil, H. K.: Nonlinear systems, (2002) · Zbl 1003.34002
[21]Rössler, O. E.: Continuous chaos-four prototype equations, Ann NY acad sci 316, 376-392 (1979) · Zbl 0437.76055
[22]Matsumoto, T.; Chua, L. O.; Kobayashi, K.: Hyperchaos: laboratory experiment and numerical confirmation, IEEE trans circ syst 33, 1143-1147 (1986)
[23]Chen, A.; Lu, J.; Lü, J.; Yu, S.: Generating hyperchaotic Lü attractor via state feedback control, Physica A 364, 103-110 (2006)
[24]Chen, G.; Ueta, T.: Yet another chaotic attractor, Int J bifurcat chaos 9, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[25]Yan, Z.: Controlling hyperchaos in the new hyperchaotic Chen system, Appl math comput 168, 1239-1250 (2005) · Zbl 1160.93384 · doi:10.1016/j.amc.2004.10.016
[26]Mei, S. W.; Shen, T. L.; Liu, K. Z.: Modern robust control theory and application, (2003)
[27]Cao, Y.; Sun, Y.; Cheng, C.: Delay-dependent robust stabilization of uncertain systems with multiple state delays, IEEE trans automat control 43, 1608-1612 (1998) · Zbl 0973.93043 · doi:10.1109/9.728880