zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization and synchronization of chaotic systems via intermittent control. (English) Zbl 1222.93194
Summary: We consider the stabilization and synchronization of chaotic systems via intermittent control with time varying control period and control width. Compared to existing results, some less conservative conditions are derived to guarantee the stabilization of nonlinear system. An effective adaptive-intermittent control law is also presented. Two examples are given to verify our proposed results.
MSC:
93D15Stabilization of systems by feedback
34D06Synchronization
34H15Stabilization (ODE in connection with control problems)
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
References:
[1]Halle, K.; Wu, C. W.; Itoh, M.; Chua, L. O.: Spread spectrum communication through modulation of chaos, IEICE trans commun 3, 469-477 (1993) · Zbl 0870.94002 · doi:10.1142/S0218127493000374
[2]Madan, R.: Chuas circuit: a paradigm for chaos, (1993)
[3]Parlitz, U.; Chua, L. O.; Kocarev, L.; Halle, K. S.; Shang, A.: Transmission of digital signals by chaotic synchronization, Int J bifurcation chaos 2, 973-977 (1992) · Zbl 0870.94011 · doi:10.1142/S0218127492000562
[4]Wu, C. W.; Chua, L. O.: A simple way to synchronize chaotic systems with applications to secure communication systems, Int J bifurcation chaos 3, 1619-1627 (1993) · Zbl 0884.94004 · doi:10.1142/S0218127493001288
[5]Yang, T.; Wu, C. W.; Chua, L. O.: Cryptography based on chaotic systems, IEEE trans circuits syst 44, 469-472 (1997) · Zbl 0884.94021 · doi:10.1109/81.572346
[6]Boccalettia, S.; Kurthsc, J.; Osipovd, G.; Valladaresb, D. L.; Zhou, C. S.: The synchronization of chaotic systems, Phys rep 366, 1-101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[7]Hu, G.; Pivka, L.; Zheleznyak, A. L.: Synchronization of a one-dimensional array of chuas circuits by feedback control and noise, IEEE trans circuits syst 42, 736-740 (1995)
[8]Jiang, G. P.; Chen, G. R.; Tang, W. K.: A new criterion for chaos synchronization using linear state feedback control, Int J bifurcation chaos 13, 2343-2351 (2003) · Zbl 1064.37515 · doi:10.1142/S0218127403008004
[9]Lor&lacute, A.; ; Zavala-R&lacute, A.; O: Adaptive tracking control of chaotic systems with applications to synchronization, IEEE trans circuits syst 54, 2019-2029 (2007)
[10]Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization, Phys rev E 71, 037203 (2005)
[11]Millerioux, G.; Daafouz, J.: An observer-based approach for input-independent global chaos synchronization of discrete-time switched systems, IEEE trans circuits syst 50, 1270-1279 (2003)
[12]Morgül, M.; Akgü, M.: A switching synchronization scheme for a class of chaotic systems, Phys lett A 301, 241-249 (2002) · Zbl 0997.37013 · doi:10.1016/S0375-9601(02)00967-2
[13]Yang, T.; Chua, L. O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE trans circuits syst 44, 976-988 (1997)
[14]Yang, T.: Impulsive control, IEEE trans autom control 44, 1081-1083 (1999) · Zbl 0954.49022 · doi:10.1109/9.763234
[15]Li, Z. G.; Wen, C. Y.; Soh, Y. C.; Xie, W. H.: The stabilization and synchronization of chuas oscillators via impulsive control, IEEE trans circuits syst 48, 1351-1355 (2001) · Zbl 1024.93052 · doi:10.1109/81.964427
[16]Stojanovski, T.; Kocarev, L.; Parlitz, U.: Driving and synchronizing by chaotic impulses, Phys rev E 54, 2128-2131 (1996)
[17]Ömer, Morgül; Moez, Feki: Synchronization of chaotic systems by using occasional coupling, Phys rev E 55, 5004-5010 (1997)
[18]Huang, T. W.; Li, C. D.; Yu, W. W.; Chen, G. R.: Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback, Nonlinearity 22, 569-584 (2009) · Zbl 1167.34386 · doi:10.1088/0951-7715/22/3/004
[19]Li, C. D.; Liao, X. F.; Huang, T. W.: Exponential stabilization of chaotic systems with delay by periodically intermittent control, Chaos 17, 013103 (2007) · Zbl 1159.93353 · doi:10.1063/1.2430394
[20]Li, C. D.; Feng, G.; Liao, X. F.: Stabilization of nonlinear systems via periodically intermittent control, IEEE trans circuits syst 54, 1019-1023 (2007)
[21]&zdot, M.; Ochowski: Intermittent dynamical control, Physica D 145, 181-190 (2000)
[22]Amritkar, R. E.; Gupte, N.: Synchronization of chaotic orbits: the effect of a finite time step, Phys rev E 47, 3889-3895 (1993)
[23]Huang, T. W.; Li, C. D.; Liu, X. Z.: Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos 18, No. 3, 033122 (2008)
[24]Cheng, C. J.; Liao, T. L.; Yan, J. J.; Hwang, C. C.: Exponential synchronization of a class of neural networks with time-varying delays, IEEE trans syst man cybern B 36, 209-215 (2006)
[25]Liang, J.; Wang, Z. D.; Liu, Y.; Liu, X.: Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances, IEEE trans syst man cybern B 38, 1073-1083 (2008)
[26]Vincent, U. E.; Guo, R. W.: A simple adaptive control for full and reduced-order synchronization of uncertain time-varying chaotic systems, Commun nonlinear sci numer simulat 14, 3925-3932 (2009) · Zbl 1221.93134 · doi:10.1016/j.cnsns.2008.09.006
[27]Al-Sawalha, M. Mossa; Noorani, M. S. M.: Anti-synchronization of two hyperchaotic systems via nonlinear control, Commun nonlinear sci numer simulat 14, 3402-3411 (2009) · Zbl 1221.37210 · doi:10.1016/j.cnsns.2008.12.021
[28]Li, R. H.: Exponential generalized synchronization of uncertain coupled chaotic systems by adaptive control, Commun nonlinear sci numer simulat 14, 2757-2764 (2009) · Zbl 1221.93244 · doi:10.1016/j.cnsns.2008.10.006