zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A chaotic block cipher algorithm for image cryptosystems. (English) Zbl 1222.94030
Summary: Recently, many scholars have proposed chaotic cryptosystems in order to promote communication security. However, there are a number of major problems detected in some of those schemes such as weakness against differential attack, slow performance speed, and unacceptable data expansion. In this paper, we introduce a new chaotic block cipher scheme for image cryptosystems that encrypts block of bits rather than block of pixels. It encrypts 256-bits of plainimage to 256-bits of cipherimage within eight 32-bit registers. The scheme employs the cryptographic primitive operations and a non-linear transformation function within encryption operation, and adopts round keys for encryption using a chaotic system. The new scheme is able to encrypt large size of images with superior performance speed than other schemes. The security analysis of the new scheme confirms a high security level and fairly uniform distribution.
MSC:
94A60Cryptography
37D45Strange attractors, chaotic dynamics
94A08Image processing (compression, reconstruction, etc.)
37N35Dynamical systems in control
References:
[1]Lian, Shiguo: Efficient image or video encryption based on spatiotemporal chaos system, Chaos soliton fract 40, No. 5, 2509-2519 (2009) · Zbl 1198.94030 · doi:10.1016/j.chaos.2007.10.054
[2]Pareek, N. K.; Patidar, V.; Sud, K. K.: Image encryption using chaotic logistic map, Image vision comput 24, 926-934 (2006)
[3]Gao, Haojiang; Zhang, Yisheng; Liang, Shuyun; Li, Dequn: A new chaotic algorithm for image encryption, Chaos soliton fract 29, No. 2, 393-399 (2006) · Zbl 1096.94006 · doi:10.1016/j.chaos.2005.08.110
[4]Gao, T.; Chen, Z.: Image encryption based on a new total shuffling algorithm, Chaos soliton fract 38, No. 1, 213-220 (2008) · Zbl 1142.94310 · doi:10.1016/j.chaos.2006.11.009
[5]Gao, T.; Gu, Q.; Chen, Z.: A new image encryption algorithm based on hyper-chaos, Phys lett A 374, No. 4, 394-400 (2008) · Zbl 1217.94096 · doi:10.1016/j.physleta.2007.07.040
[6]Behnia, S.; Akhshani, A.; Mahmodi, H.; Akhavan, A.: A novel algorithm for image encryption based on mixture of chaotic maps, Chaos soliton fract 35, No. 2, 408-419 (2008) · Zbl 1134.94356 · doi:10.1016/j.chaos.2006.05.011
[7]Behnia, S.; Akhshani, A.; Mahmodi, H.; Akhavan, A.: Applications of tripled chaotic maps in cryptography, Chaos soliton fract 40, No. 1, 505-519 (2009) · Zbl 1197.94177 · doi:10.1016/j.chaos.2007.08.013
[8]Chen, G.; Mao, Y.; Chui, C. K.: A symmetric image encryption scheme based on 3D chaotic cat maps, Chaos soliton fract 21, No. 3, 749-761 (2004) · Zbl 1049.94009 · doi:10.1016/j.chaos.2003.12.022
[9]Kwok, H. S.; Wallace, K.; Tang, S.: A fast image encryption system based on chaotic maps with finite precision representation, Chaos soliton fract 32, No. 4, 1518-1529 (2007) · Zbl 1127.94004 · doi:10.1016/j.chaos.2005.11.090
[10]Xing-Yuan, Wang; Qing, Yu.: A block encryption algorithm based on dynamic sequences of multiple chaotic systems, Commun nonlinear sci numer simul 14, No. 2, 574-581 (2009) · Zbl 1221.94067 · doi:10.1016/j.cnsns.2007.10.011
[11]Rhouma, Rhouma; Belghith, Safya: Cryptanalysis of a spatiotemporal chaotic image/video cryptosystem, Phys lett A 372, 5790-5794 (2008) · Zbl 1223.94019 · doi:10.1016/j.physleta.2008.07.042
[12]Alvarez, G.; Li, S.: Cryptanalyzing a nonlinear chaotic algorithm (NCA) for image encryption, Commun nonlinear sci numer simul 14, No. 11, 3743-3749 (2009)
[13]Rhouma, Rhouma; Belghith, Safya: Cryptanalysis of a new image encryption algorithm based on hyper-chaos, Phys lett A 372, 5973-5978 (2008) · Zbl 1223.94020 · doi:10.1016/j.physleta.2008.07.057
[14]Mao, Y.; Chen, G.; Lian, S.: A novel fast image encryption scheme based on 3D chaotic Baker maps, Int J bifurcation chaos (2003)
[15]Wang, K.; Pei, Ws.; Zou, L.; Song, A.; He, Z.: On the security of 3D cat map based symmetric image encryption scheme, Phys lett A 343, No. 6, 432-439 (2005) · Zbl 1194.81054 · doi:10.1016/j.physleta.2005.05.040
[16]Li C. On the security of a class of image encryption schemes, IACR’s Cryptology ePrint Archive, Report 2007/339; 2007.
[17]Amin, Mohamed; Faragallah, Osama S.; El-Latif, Ahmed A. Abd: Chaos-based hash function (CBHF) for cryptographic applications, Chaos soliton fract (2009)
[18]Schneier, Bruce: Applied cryptography – protocols, algorithms, and source code in C, (1996) · Zbl 0853.94001
[19]Ahmed, Hossam El-Din H.; Kalash, Hamdy M.; Faragallah, Osama S.: Encryption efficiency analysis and security evaluation of RC6 block cipher for digital images, Int J comput inform syst sci eng 1, No. 1, 33-39 (2007)
[20]Peng Jun, Jin Shangzhu, Chen Guorong, Yang Zhiming, Liao Xiaofeng. An image encryption scheme based on chaotic map. In: IEEE Conference Proceedings: fourth international conference on natural computation. doi:10.1109/ICNC.2008.227.
[21]Ahmed, Hossam El-Din H.; Kalash, Hamdy M.; Faragallah, Osama S.: An efficient chaos-based feedback stream cipher (ECBFSC) for image encryption and decryption, Int J comput inform 31, No. 1, 121-129 (2007)
[22]Mazloom Sahar, Eftekhari-Moghadam Amir Masud. Color image encryption based on coupled nonlinear chaotic map. Chaos Soliton Fract 2009;42(3):1745 – 54. · Zbl 1198.94032 · doi:10.1016/j.chaos.2009.03.084
[23]Shannon, C. E.: Communication theory of secrecy system, Bell syst tech J 28, 656-715 (1949) · Zbl 1200.94005
[24]Wei-bin Chen, Xin Zhang, Image encryption algorithm based on Henon chaotic system. In: International conference on image analysis and signal processing. IASP 2009, 11 – 12 April; 2009. p. 94 – 7. doi:10.1109/IASP.2009.5054653.
[25]Behnia, S.; Akhshani, A.; Akhshani, A.; Mahmodi, H.; Akhavan, A.: A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps, Phys lett A 366, 391-396 (2007)
[26]Sun, Fuyan; Liu, Shutang; Li, Zhongqin; Lü, Zongwang.: A novel image encryption algorithm based on spatial chaos map, Chaos soliton fract 38, 631-640 (2008) · Zbl 1146.94303 · doi:10.1016/j.chaos.2008.01.028
[27]Elashry, Ibrahim F.; Allah, Osama S. Farag; Abbas, Alaa M.; El-Rabaie, S.; El-Samie, Fathi E. Abd: Homomorphic image encryption, J electron imaging 18, No. 3, 033002 (2009)