zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis. (English) Zbl 1222.94037
Summary: We describe a method about how to determine parameters of some double-scroll chaotic systems, including the Lorenz system and the Chua’s circuit, from one of its variables. The geometric properties of the system are exploited firstly to reduce the parameter search space. Then, a synchronization-based approach, with the help of the same geometric properties as coincidence criteria, is implemented to determine the parameter values with the wanted accuracy. The method is not affected by a moderate amount of noise in the waveform. As an example of its effectiveness, the method is applied to cryptanalyze two two-channel chaotic cryptosystems, figuring out how the secret keys can be directly derived from the driving signal z(t).
MSC:
94A60Cryptography
37N35Dynamical systems in control
37D45Strange attractors, chaotic dynamics
References:
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990)
[2]Yang, T.: A survey of chaotic secure communication systems, Int J comput cognit 2, 81-130 (2004)
[3]Devaney, R. L.: A first course in chaotic dynamical systems, (1992) · Zbl 0768.58001
[4]Boutayeb, M.; Darouach, M.; Rafaralahy, H.: Generalized state-space observers for chaotic synchronization and secure communication, IEEE trans circ syst I – fundam theor appl 49, No. 3, 345-349 (2002)
[5]Memon, Q.: Synchronized chaos for network security, Comput commun 26, 498-505 (2003)
[6]Bowong, S.: Stability analysis for the synchronization of chaotic systems with different order: application to secure communication, Phys lett A 326, No. 1 – 2, 102-113 (2004) · Zbl 1161.94389 · doi:10.1016/j.physleta.2004.04.004
[7]Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.: Breaking two secure communication systems based on chaotic masking, IEEE trans circ syst II: Exp briefs 51, No. 10, 505-506 (2004)
[8]Alvarez, G.; Li, S.: Breaking network security based on synchronized chaos, Comput commun 27, 1679-1681 (2004)
[9]Alvarez, G.; Hernandez, L.; Muñoz, J.; Montoya, F.; Li, S.: Security analysis of a communication system based on the synchronization of different order chaotic systems, Phys lett A 345, No. 4 – 6, 245-250 (2005)
[10]Short, K. M.: Steps toward unmasking secure communications, Int J bifurcat chaos 4, No. 4, 959-977 (1994) · Zbl 0875.94002 · doi:10.1142/S021812749400068X
[11]Short, K. M.: Detection of teleseismic events in seismic sensor data using nonlinear dynamic forecasting, Int J bifurcat chaos 7, No. 8, 1833-1845 (1997) · Zbl 0927.74041 · doi:10.1142/S0218127497001400
[12]Jiang, Z. P.: A note on chaotic secure communication systems, IEEE trans circ syst I – fundam theor appl 49, No. 1, 92-96 (2002)
[13]Wang, B. -H.; Bu, S.: Controlling the ultimate state of projective synchronization in chaos: application to chaotic encryption, Int J mod phys B 18, No. 17 – 19, 2415-2421 (2004)
[14]Li, Z.; Xu, D.: A secure communication scheme using projective chaos synchronization, Chaos solitons fractals 22, 477-481 (2004) · Zbl 1060.93530 · doi:10.1016/j.chaos.2004.02.019
[15]Kerckhoffs, A.: La cryptographie militaire, J sci militaires 9, No. 1,2, 5-38 (1883)
[16]Stinson, D.: Cryptography: theory and practice, (1995) · Zbl 0855.94001
[17]Lorenz, E. N.: Deterministic non periodic flow, J atmos sci 20, No. 2, 130-141 (1963)
[18]Pecora, L. M.; Carroll, T. L.: Driving systems with chaotic signals, Phys rev A 44, 2374-2383 (1991)
[19]Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems, Phys rev lett 82, No. 15, 3042-3045 (1999)
[20]Xu, D.; Li, Z.: Controlled projective synchronization in nonparametrically-linear chaotic systems, Int J bifurcat chaos 12, No. 6, 1395-1402 (2002)
[21]Stojanovski, T.; Kocarev, L.; Parlitz, U.: A simple method to reveal the parameters of the Lorenz system, Int J bifurcat chaos 6, No. 12B, 2645-2652 (1996)
[22]Parlitz, U.: Estimating model parameters from seriesby autosynchronization, Phys rev lett 76, No. 8, 1232-1235 (1996)
[23]Huang, D.: Synchronization based estimation of all parameters of chaotic systems from time series, Phys rev E 69, No. 6, 67201 (2004)
[24]Yu, D.; Parlitz, U.: Estimating parameters by autosynchronization with dynamics restrictions, Phys rev E 77, No. 6, 066221 (2008)
[25]Yu, D.; Liu, F.: Dynamical parameter identification from a scalar time series, Chaos 18, No. 4, 043108 (2008)
[26]Orue, A. B.; Fernandez, V.; Alvarez, G.; Pastor, G.; Romera, M.; Li, S.: Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems, Phys lett A 372, No. 34, 5588-5592 (2008) · Zbl 1223.94017 · doi:10.1016/j.physleta.2008.06.066
[27]Alvarez, G.; Li, S.; Montoya, F.; Romera, M.; Pastor, G.: Breaking projective chaos synchronization secure communication using filtering and generalized synchronization, Chaos solitons fractals 24, No. 3, 775-783 (2005) · Zbl 1068.94002 · doi:10.1016/j.chaos.2004.09.038
[28]Parlitz, U.; Junge, L.; Kocarev, L.: Synchronization-based parameter estimation from time series, Phys rev E 54, No. 6, 6253-6259 (1996)
[29]Cuomo, K. M.; Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications, Phys rev lett 71, No. 1, 65-68 (1993)
[30]Alvarez, G.; Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems, Int J bifurcat chaos 16, No. 8, 2129-2151 (2006) · Zbl 1192.94088 · doi:10.1142/S0218127406015970
[31]Gutiérrez, J.; Iglesias, A.: Syncronizing chaotic systems with positive conditional Lyapunov exponents by using convex combinations of the drive and response systems, Phys lett A 239, No. 3, 174-180 (1998) · Zbl 0946.37022 · doi:10.1016/S0375-9601(97)00969-9
[32]Chua L, A zoo of strange attractors from the canonical Chua’s circuits. In: Proceedings of the 35th midwest symposium on circuits and systems. IEEE, vol. 2; 1992. p. 916 – 26.
[33]Yalcin, M. E.; Suykens, J. A. K.; Vandewalle, J.: Families of scroll grid attractors, Int J bifurcat chaos 12, No. 1, 23-41 (2002) · Zbl 1044.37029 · doi:10.1142/S0218127402004164
[34]Yu, S.; Tang, W.; Lu, J.; Chen, G.: Generation of n x m-wing Lorenz-like attractors from a modified Shimizu-Morioka model, IEEE trans circ syst I: Regul pap 55, No. 11, 1168-11672 (2008)
[35]Yu, S.; Lu, J.; Chen, G.: Design and implementation of multi-directional grid multi-torus chaotic attractors, IEEE trans circ syst I: Regul pap 54, No. 9, 2087-2098 (2006)