zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of delayed complex dynamical networks with impulsive and stochastic effects. (English) Zbl 1223.37115
Authors’ abstract: “In this paper, the globally exponential synchronization of delayed complex dynamical networks with impulsive and stochastic perturbations is studied. The concept named average impulsive interval with elasticity number of impulsive sequence is introduced to get a less conservative synchronization criterion. By comparing with existing results, in which maximum or minimum of impulsive intervals are used to derive the synchronization criterion, the proposed synchronization criterion increases (or decreases) the impulse distances, which leads to the reduction of the control cost (or enhances the robustness of anti-interference) as the most important characteristic of impulsive synchronization techniques. It is discovered in our criterion that the elasticity number has influence on the synchronization of delayed complex dynamical networks but has no influence on that of non-delayed complex dynamical networks. Numerical simulations including a small-world network coupled with delayed Chua’s circuit are given to show the effectiveness and less conservativeness of the theoretical results.”
MSC:
37N35Dynamical systems in control
34D06Synchronization
05C82Small world graphs, complex networks (graph theory)
References:
[1]Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.: Evolution of the social network of scientific collaborations, Physica A 311, 590-614 (2002) · Zbl 0996.91086 · doi:10.1016/S0378-4371(02)00736-7
[2]Huberman, B. A.; Adamic, L. A.: Growth dynamics of the world-wide-web, Nature 401, 131-132 (1999)
[3]Pastor-Satorras, R.; Vespignani, A.: Epidemic spreading in scale-free networks, Physical review letters 86, 3200-3203 (2001)
[4]Wang, F.; Sun, Y.: Self-organizing peer-to-peer social networks, Computational intelligence 24, No. 3, 213-233 (2008)
[5]Xie, Q.; Chen, G.; Bollt, E.: Hybrid chaos synchronization and its application in information processing, Mathematical and computer modelling 35, No. 1–2, 145-163 (2002) · Zbl 1022.37049 · doi:10.1016/S0895-7177(01)00157-1
[6]Yu, W.; Cao, J.; Chen, G.; Lü, J.; Jian, H.; Wei, W.: Local synchronization of a complex network model, IEEE transactions on systems, man and cybernetics, part B (Cybernetics) 39, No. 1, 230-241 (2009)
[7]Sun, Y.; Cao, J.; Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks, Neurocomputing 70, No. 13–15, 2477-2485 (2007)
[8]Yang, X.; Cao, J.: Stochastic synchronization of coupled neural networks with intermittent control, Physics letters A 373, 3259-3272 (2009) · Zbl 1233.34020 · doi:10.1016/j.physleta.2009.07.013
[9]Yang, X.; Cao, J.: Finite-time stochastic synchronization of complex networks, Applied mathematical modelling 34, 3631-3641 (2010) · Zbl 1201.37118 · doi:10.1016/j.apm.2010.03.012
[10]Yu, W.; Chen, G.; Cao, J.: Adaptive synchronization of uncertain coupled stochastic complex networks, Asian journal of control 13, No. 3, 1-12 (2011) · Zbl 1221.93268 · doi:10.1002/asjc.180
[11]Lu, J. Q.; Ho, D. W. C.; Wang, Z. D.: Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers, IEEE transactions on neural networks 20, No. 10, 1617-1629 (2009)
[12]Lu, J. Q.; Ho, D. W. C.; Wu, L. G.: Exponential stabilization in switched stochastic dynamical networks, Nonlinearity 22, 889-911 (2009) · Zbl 1158.93413 · doi:10.1088/0951-7715/22/4/011
[13]Liang, J.; Wang, Z. D.; Liu, Y.; Liu, X.: Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances, IEEE transactions on systems, man and cybernetics, part B (Cybernetics) 38, No. 4, 1073-1083 (2008)
[14]Wang, Z. D.; Wang, Y.; Liu, Y.: Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays, IEEE transactions on neural networks 21, No. 1, 11-25 (2010)
[15]Li, X.: Existence and global exponential stability of periodic solution for delayed neural networks with impulsive and stochastic effects, Neurocomputing 73, 749-758 (2010)
[16]Jiang, H.; Bi, Q.: Impulsive synchronization of networked nonlinear dynamical systems, Physics letters A 374, No. 27, 2723-2729 (2010)
[17]Guan, Z.; Liu, Z.; Feng, G.; Wang, Y.: Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE transactions on circuits and systems I: Fundamental theory and applications 8, No. 57, 2182-2195 (2010)
[18]Yang, Y.; Cao, J.: Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects, Nonlinear analysis: real world applications 11, 1650-1659 (2010) · Zbl 1204.34072 · doi:10.1016/j.nonrwa.2009.03.020
[19]Zhou, J.; Xiang, L.; Liu, Z.: Synchronization in complex dynamical networks with impulsive effects, Physica A 384, No. 2, 684-692 (2007)
[20]Liu, B.; Teo, K. L.; Liu, X.: Robust exponential stabilization for large-scale uncertain impulsive systems with coupling time-delays, Nonlinear analysis 68, 1169-1183 (2008) · Zbl 1154.34041 · doi:10.1016/j.na.2006.12.025
[21]Li, P.; Cao, J.; Wang, Z. D.: Robust impulsive synchronization of coupled delayed neural networks with uncertainties, Physica A 373, 261-272 (2007)
[22]Yang, M.; Wang, Y.; Xiao, J.; Wang, H.: Robust synchronization of impulsive-coupled complex switched networks with parameteric uncertainties and time-varying delays, Nonlinear analysis: real world applications 11, No. 4, 3008-3020 (2010) · Zbl 1214.93055 · doi:10.1016/j.nonrwa.2009.10.021
[23]Zhang, G.; Liu, Z.; Ma, Z.: Synchronization of complex dynamical networks via impulsive control, Chaos 17, 043126 (2007) · Zbl 1163.37389 · doi:10.1063/1.2803894
[24]Song, Q.; Wang, Z. D.: Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays, Physica A 387, 3314-3326 (2008)
[25]Wu, H.; Sun, J.: P-moment stability of stochastic differential equations with impulsive jump and Markovian switching, Automatica 42, 1753-1759 (2006) · Zbl 1114.93092 · doi:10.1016/j.automatica.2006.05.009
[26]Wang, X.: Exponential p-stability of impulsive stochastic Cohen–Grossberg neural networks with mixed delays, Mathematics and computers in simulation 79, 1698-1710 (2009) · Zbl 1165.34043 · doi:10.1016/j.matcom.2008.08.008
[27]Tang, Y.; Leung, Y. S. S.; Wong, W. K.; Fang, J.: Impulsive pinning synchronization of stochastic discrete-time networks, Neurocomputing 73, 2132-2139 (2010)
[28]Lu, J. Q.; Ho, D. W. C.; Cao, J.: A unified synchronization criterion for impulsive dynamical networks, Automatica 46, No. 7, 1215-1221 (2010) · Zbl 1194.93090 · doi:10.1016/j.automatica.2010.04.005
[29]Watts, D. J.; Strogatz, S. H.: Collective dynamics of ”small-world” networks, Nature 393, 440-442 (1998)
[30]Horn, R.; Johnson, C.: Matrix analysis, (2001)
[31]Wu, C. W.; Chua, L. O.: Synchronization in an array of linearly coupled dynamical networks, IEEE transactions on circuits and systems I: Fundamental theory and applications 42, No. 8, 430-447 (1995) · Zbl 0867.93042 · doi:10.1109/81.404047
[32]Wang, Y.; Xie, L.; Souza, C.: Robust control of a class of uncertain nonlinear systems, Systems and control letters 19, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[33]Yang, Z.; Xu, D.: Stability analysis and design of impulsive control systems with time delay, IEEE transactions on automatic control 52, No. 8, 1448-1454 (2007)