zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear dynamical analysis for displaced orbits above a planet. (English) Zbl 1223.70054
Summary: Nonlinear dynamical analysis and the control problem for a displaced orbit above a planet are discussed. It is indicated that there are two equilibria for the system, one hyperbolic (saddle) and one elliptic (center), except for the degenerate h z max , a saddle-node bifurcation point. Motions near the equilibria for the nonresonance case are investigated by means of the Birkhoff normal form and dynamical system techniques. The Kolmogorov-Arnold-Moser (KAM) torus filled with quasiperiodic trajectories is measured in the τ 1 and τ 2 directions, and a rough algorithm for calculating τ 1 and τ 2 is proposed. A general iterative algorithm to generate periodic Lyapunov orbits is also presented. Transitions in the neck region are demonstrated, respectively, in the nonresonance, resonance, and degradation cases. One of the important contributions of the paper is to derive necessary and sufficiency conditions for stability of the motion near the equilibria. Another contribution is to demonstrate numerically that the critical KAM torus of nontransition is filled with the (1,1)-homoclinic orbits of the Lyapunov orbit.
MSC:
70F15Celestial mechanics
70H08Nearly integrable Hamiltonian systems, KAM theory
References:
[1]Arnold V.I., Kozlov V.V., Neishtadt A.I. (1997) Mathematical Aspects of Classical and Celestial Mechanics. 2nd edn. Springer–Verlag, NY
[2]Baoyin H., McInnes C. (2006) Solar Sail Halo Orbits at the Sun-Earth Artificial L1 Point. Celest. Mech. Dyn. Astron. 94: 155–171. doi: 10.1007/s10569-005-4626-3 · Zbl 1125.70020 · doi:10.1007/s10569-005-4626-3
[3]Barden, B.T., Howell, K.C.: Application of dynamical systems theory to trajectory design for a libration point mission. Paper No. AIAA-96-3602-CP (1996)
[4]Bookless J., McInnes C. (2006) Dynamics and control of displaced periodic orbits using solar-sail propulsion. J. Guid. Control Dyn. 29(3): 527–537. doi: 10.2514/1.15655 · doi:10.2514/1.15655
[5]Bookless, J., McInnes, C.: Control of Lagrange point orbits using solar sail propulsion. IAC-05-C1.6.03 (2006b)
[6]Celletti A., Chierchia L. (2006) KAM tori for N-body problems: a brief history. Celest. Mech. Dyn. Astron. 95: 117–139. doi: 10.1007/s10569-005-6215-x · Zbl 1152.70008 · doi:10.1007/s10569-005-6215-x
[7]Conley C. (1963) Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16: 732–746. doi: 10.1137/0116060 · Zbl 0197.21105 · doi:10.1137/0116060
[8]Danckowicz H. (1994) Some special orbits in the two-body problem with radiation pressure. Celest. Mech. Dyn. Astron. 58(4): 353–370. doi: 10.1007/BF00692010 · doi:10.1007/BF00692010
[9]Golubitsky M., Marsden J.E. (1983) The Morse lemma in infinite dimensions via singularity theory. SIAM J. Math. Anal. 14(6): 1037–1044. doi: 10.1137/0514083 · Zbl 0525.58013 · doi:10.1137/0514083
[10]Koon W.S., Lo M.W., Marsden J.E., Ross S.D. (2000) Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2): 427–469. doi: 10.1063/1.166509 · Zbl 0987.70010 · doi:10.1063/1.166509
[11]Llibre J., Martinez R., Simó C. (1985) Transversality of the invariant manifolds associated to Lyapunov family of periodic orbits near L 2 in the restricted three-body problem. J. Differ. Equ. 58: 104–156. doi: 10.1016/0022-0396(85)90024-5 · Zbl 0594.70013 · doi:10.1016/0022-0396(85)90024-5
[12]McInnes C.R. (1999) Solar Sailing: Technology, Dynamics and Mission Applications. Springer–Verlag, London
[13]Meyer, K.R., Hall, R.: Hamiltonian Mechanics and the n-Body Problem. Springer-Verlag, Applied Mathematical Sciences (1992)
[14]Moser J. (1958) On the generalization of a theorem of Liapunov. Commun. Pure Appl. Math. 11: 257–271. doi: 10.1002/cpa.3160110208 · Zbl 0082.08003 · doi:10.1002/cpa.3160110208
[15]Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Texts Appl. Math. Sci. 2, Springer–Verlag (1990)
[16]Xu,Ming., Xu, Shijie. (2007) J 2 invariant relative orbits via differential correction algorithm. Acta Mech. Sin. 23(5): 585–595. doi: 10.1007/s10409-007-0097-y · Zbl 1202.70122 · doi:10.1007/s10409-007-0097-y