zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Leader-following consensus of multi-agent systems under fixed and switching topologies. (English) Zbl 1223.93006
Summary: The leader-following consensus problem of higher order multi-agent systems is considered. The dynamics of each agent and the leader is assumed as a linear system. The control of each agent using local information is designed and a detailed analysis of the leader-following consensus is presented for both fixed and switching interaction topologies, which describe the information exchange between the multi-agent systems. The design technique is based on algebraic graph theory, Riccati inequality and Lyapunov inequality. Simulations indicate the capabilities of the algorithms.
93A14Decentralized systems
93C35Multivariable systems, multidimensional control systems
93B25Algebraic theory of control systems
[1]Lian, Z.; Deshmukh, A.: Performance prediction of an unmanned airborn vehicle multi-agent system, European journal of operational research 172, No. 2, 680-695 (2006) · Zbl 1168.90669 · doi:10.1016/j.ejor.2004.10.015
[2]Lin, Z.; Francis, B.; Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles, IEEE transactions on automatic control 50, No. 1, 121-127 (2005)
[3]J. Lin, A.S. Morse, B.D.O. Anderson, The multi-agent rendezvous problem, in: Proceedings of 42nd IEEE Conference on Decision and Control, vol. 2 (9) 2003, pp. 1508–1513.
[4]Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory, IEEE transactions on automatic control 51, No. 3, 401-420 (2006)
[5]R. Olfati-Saber, J.S. Shamma, Consensus filters for sensor networks and distributed sensor fusion, in: Procceedings of 44th IEEE Conference on Decision and Control, and the European Control Conference, 2005, pp. 6698–6703.
[6]Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 943-948 (2007)
[7]Vicsek, T.; Czirok, A.; Jacob, E. B.; Cohen, I.; Schochet, O.: Novel type of phase of phase trasitions in a system of self-dedriven particles, Physical review letters 75, No. 6, 1226-1229 (1995)
[8]Savkin, A. V.: Coordinated collective motion of groups of autonomous mobile robots: analysis of vicsek’s model, IEEE transactions on automatic control 49, No. 6, 981-983 (2004)
[9]H.G. Tanner, A. Jadbabaie, G.J. Pappas, Stable flocking of mobile agents, Part I: Fixed topology; Part II: Dynamic topology, in: Proceedings of 42nd IEEE Conference on Decision and Control, 2, 2003, pp. 2010–2015, pp. 2016–2021.
[10]Lin, Z.; Brouchke, M.; Francis, B.: Local control strategies for a groups of mobile atutonomous agents, IEEE transactions on automatic control 49, No. 4, 622-629 (2004)
[11]W. Ren, R.W. Beard, Consensus of information under dyanmically changing interaction topologies, in: Preccedings of the 2004 Americian Control Conference, Boston, MA, 2004, pp. 4939–4944.
[12]R. Olfati-Saber, R.M. Murray, Consensus protocols for networks of dynamic agents, in: Proceedings of 2003 American Control Conference, 2003.
[13]Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, No. 9, 1520-1533 (2004)
[14]Hatano, Y.; Medbshi, M.: Agreement over random networks, IEEE transactions on automatic control 50, No. 11, 1867-1872 (2005)
[15]Huang, M.; Manton, J. H.: Coordination and consensus of networked agents with noisy measurents: stochastic algorithms and asymptotic behavior, SIAM journal on control and optimization 48, No. 1, 134-161 (2009) · Zbl 1182.93108 · doi:10.1137/06067359X
[16]Moreau, L.: Stability of multiagent systems with time-dependent communication links, IEEE transactions on automatic control 50, No. 2, 169-182 (2005)
[17]Tian, Y.; Liu, C.: Consensus of multi-agent systems with diverse input and communication delays, IEEE transactions on automatic control 53, No. 9, 2122-2128 (2008)
[18]Godsil, C.; Royle, G.: Algebraic graph theory, (2001)
[19]Hong, Y.; Gao, L.; Cheng, D.; Hu, J.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection, IEEE transactions on automatic control 52, No. 5, 943-948 (2007)
[20]Q. Hui, W.M. Haddad, S.P. Bhat, Finite-time semistability theory with applications to consensus protocols in dynamical networks, in: Proceedings of 2007 American Control Conference, 2007, pp. 2411–2416.
[21]Pham, Q.; Slotine, J. J.: Stable concurrent sysnchronization in dynamical system networks, Neural networks 20, No. 1, 62-77 (2007) · Zbl 1158.68449 · doi:10.1016/j.neunet.2006.07.008
[22]Slotine, J. J. E.; Wang, W.: A study of synchronization and group cooperation using partial contraction theory, Cooperative control: the 2003 block island workshop (2004)
[23]Wang, W.; Slotine, J. J. E.: Contraction analysis of time-delayed communications and group cooperation, IEEE transactions on automatic control 51, No. 4, 712-717 (2006)
[24]Acrak, M.: Passivity as a design tool for group coordination, IEEE transactions on automatic control 52, No. 8, 1380-1390 (2007)
[25]Chopra, N.; Spong, M. W.: Advances in robot control, (2007)
[26]Zhu, Y. H.; Qi, H.; Cheng, D.: Synchronisation of a class of networked passive systems with switching topology, International journal of control 82, No. 7, 1326-1333 (2009) · Zbl 1168.93395 · doi:10.1080/00207170802549560
[27]Hammel, D.: Formation flight as an energy saving mechanism, Israel journal of zool 41, 261-278 (1995)
[28]Andersson, M.; Wallander, J.: Kin selection and reciprocity in flight formation, Behavioral ecology 15, No. 1, 158-162 (2004)
[29]Liu, B.; Chu, T.; Wang, L.; Xie, G.: Controllability of a leader–follower dynamic network with switching topology, IEEE transactions on automatic control 53, No. 4, 1009-1013 (2008)
[30]M. Ji, M. Egerstedt, A graph-theoretic characterization of controllability for multi-agent systems, in: Proceedings of the 2007 American Control Conference, New York, USA, 2007, pp. 4588–4593.
[31]Rahmani, A.; Ji, M.; Mesbahi, M.; Egerstedt, M.: Controllability of multi-agent systems from a graph-theoretic perspective, SIAM journal on control and optimization 48, No. 1, 162-186 (2009) · Zbl 1182.93025 · doi:10.1137/060674909
[32]Cheng, D.; Wang, J.; Hu, X.: An extension of Lasall’s invariance principle and its application to multi-agent consensus, IEEE transactions on automatic control 53, No. 7, 1765-1770 (2008)
[33]Hong, Y.; Chen, G.; Bushnellc, L.: Distributed observers design for leader-following control of multi-agent networks, Automatica 44, No. 3, 846-850 (2008)
[34]Dimarogonasa, D. V.; Tsiotras, P.; Kyriakopoulos, K. J.: Leader–follower cooperative attitude control of multiple rigid bodies, Systems control letters 58, No. 6, 429-435 (2009) · Zbl 1161.93002 · doi:10.1016/j.sysconle.2009.02.002
[35]Consolini, L.; Morbidi, F.; Prattichizzo, D.; Tosques, M.: Leader–follower formation control of nonholonomic mobile robots with input constraints, Automatica 44, No. 5, 1343-1349 (2008)
[36]Peng, K.; Yanga, Y.: Leader-following consensus problem with a varying-velocity leader and time-varying delays, Physica A 388, No. 2–3, 193-208 (2009)
[37]Wang, W.; Slotine, J. J. E.: A theoretical study of different leader roles in networks, IEEE transactions on automatic control 51, No. 7, 1156-1161 (2006)
[38]Wang, J.; Cheng, D.; Hu, X.: Consensus of multi-agent linear dynamical systems, Asian journal of control 10, No. 2, 144-155 (2008)
[39]Wang, J.; Tan, Y.; Mareels, I.: Robustness analysis of leader–follower consensus, Journal of systems science and complexity 22, No. 2, 1559-7067 (2009)
[40]Wang, L.; Liu, Z.: Robust consensus of multi-agent systems with noise, Science in China, series F 52, No. 2, 824-834 (2009) · Zbl 1182.93011 · doi:10.1007/s11432-009-0082-0
[41]Horn, R.; Johnson, C.: Matrix analysis, (1985)