zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global dynamics of a staged-progression model for HIV/AIDS with amelioration. (English) Zbl 1225.34052
Summary: We consider a mathematical model for HIV/AIDS that incorporates staged progression and amelioration. Amelioration as a result of HAART treatment is allowed to occur across any number of stages. The global dynamics are completely determined by the basic reproduction number R 0 . If R 0 1, then the disease-free equilibrium (DFE) is globally asymptotically stable and the disease always dies out. If R 0 >1, DFE is unstable and a unique endemic equilibrium (EE) is globally asymptotically stable, and the disease persists at the endemic equilibrium. The proof of global stability utilizes a global Lyapunov function.
34C60Qualitative investigation and simulation of models (ODE)
92C60Medical epidemiology
34D20Stability of ODE
[1]Wang, L.; Li, M. Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T cells, Math. biosci. 200, 44-57 (2006) · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[2]Wasserstein-Robbins, F.: A mathematical model of HIV infection: simulating T4, T8, macrophages, antibody, and virus via specific anti-HIV response in the presence of adaptation and tropism, Bull. math. Biol. 72, 1208-1253 (2010) · Zbl 1197.92028 · doi:10.1007/s11538-009-9488-5
[3]Elaiw, A. M.: Global properties of a class of HIV models, Nonlinear anal. RWA 11, 2253-2263 (2010) · Zbl 1197.34073 · doi:10.1016/j.nonrwa.2009.07.001
[4]Wang, K.; Fan, A.; Torres, A.: Global properties of an improved hepatitis B virus model, Nonlinear anal. RWA 11, 3131-3138 (2010) · Zbl 1197.34081 · doi:10.1016/j.nonrwa.2009.11.008
[5]Vieira, I.; Cheng, R.; Harper, P.; De Senna, V.: Small world network models of the dynamics of HIV infection, Ann. oper. Res. 178, 173-200 (2010) · Zbl 1197.90294 · doi:10.1007/s10479-009-0571-y
[6]Anderson, R. M.; May, R. M.; Medley, G. F.; Johnson, A.: A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. appl. Med. biol. 3, 229-263 (1986) · Zbl 0609.92025
[7]Feng, Z.; Thieme, H. R.: Endemic model with arbitrarily distributed periods of infection I. General theory, SIAM J. Appl. math. 61, 803-833 (2000)
[8]Gumel, A. B.; Mccluskey, C. C.; Den Driessche, P. Van: Mathematical study of a staged progression HIV model with imperfect vaccine, Bull. math. Biol. 68, 2105-2128 (2006)
[9]Hendriks, J. C.; Satten, G. A.; Longini, I. M.; Van Druten, H. A.; Schellekens, P. T.; Coutinho, R. A.; Griensven, G. J. Gvan: Use of immunological markers and continuous-time Markov models to estimate progression of HIV infection in homosexual men, Aids 10, 649-656 (1996)
[10]Hethcote, H. W.; Van Ark, J. W.; Jr., I. M. Longini: A simulation model of AIDS in San Francisco: I. Model formulation and parameter estimation, Math. biosci. 106, 203-222 (1991)
[11]Hyman, J. M.; Li, J.; Stanley, E. A.: The differential infectivity and staged progression models for the transmission of HIV, Math. biosci. 155, 77-109 (1999) · Zbl 0942.92030 · doi:10.1016/S0025-5564(98)10057-3
[12]Jacquez, J. A.; Simon, C. P.; Koopman, J.; Sattenspiel, L.; Perry, T.: Modelling and analyzing HIV transmission: the effect of contact patterns, Math. biosci. 92, 119-199 (1988) · Zbl 0686.92016 · doi:10.1016/0025-5564(88)90031-4
[13]Lin, X.; Hethcote, H. W.; Den Driessche, P. Van: An epidemiological model for HIV/AIDS with proportional recruitment, Math. biosci. 118, 181-195 (1993) · Zbl 0793.92011 · doi:10.1016/0025-5564(93)90051-B
[14]Longini, I. M.; Clark, W. S.; Haber, M.; Horsburgh, R.: The stages of HIV infection: waiting times and infection transmission probabilities, Lecture notes in biomath. 83, 111-137 (1989) · Zbl 0685.92012
[15]Mccluskey, C. C.: A model of HIV/AIDS with staged progression and amelioration, Math. biosci. 181, 1-16 (2003) · Zbl 1008.92032 · doi:10.1016/S0025-5564(02)00149-9
[16]Perelson, A.; Nelson, P.: Mathematical analysis of HIV-1 dynamics in vivo, SIAM rev. 41, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[17]Thieme, H. R.; Castillo-Chavez, C.: How May infection-age dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. math. 53, 1447-1479 (1992) · Zbl 0811.92021 · doi:10.1137/0153068
[18]Guo, H.; Li, M. Y.: Global dynamics of a staged progression model with amelioration for infectious diseases, J. biol. Syst. 2, 154-168 (2008) · Zbl 1140.92020 · doi:10.1080/17513750802120877
[19]Hethcote, H. W.; Van Ark, J. W.: Modeling HIV transmission and AIDS in the united states, Lecture notes in biomath. 95 (1992) · Zbl 0805.92026
[20]Anderson, R. M.; May, R. M.: Infectious diseases of humans: dynamics and control, (1992)
[21]Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A. J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. math. Biol. 28, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[22]Den Driessche, P. Van; Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. biosci. 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[23]Lasalle, J. P.: The stability of dynamical systems, Regional conference series in applied mathematics (1976)
[24]Guo, H.; Li, M. Y.: Global dynamics of a staged progression model for infectious diseases, Math. biosci. Eng. 3, 513-525 (2006) · Zbl 1092.92040 · doi:10.3934/mbe.2006.3.513
[25]Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J.: Global dynamics of a SEIR model with varying total population size, Math. biosci. 160, 191-213 (1999) · Zbl 0974.92029 · doi:10.1016/S0025-5564(99)00030-9
[26]Iggidr, A.; Mbang, J.; Sallet, G.; Tewa, J. J.: Multi-compartment models, Discrete contin. Dyn. syst. Supp., 506-519 (2007) · Zbl 1163.34366 · doi:http://www.aimsciences.org/journals/redirecting.jsp?paperID=2858
[27]Freedman, H. I.; So, J. W. -H.: Global stability and persistence of simple food chains, Math. biosci. 76, 69-86 (1985) · Zbl 0572.92025 · doi:10.1016/0025-5564(85)90047-1
[28]Goh, B. S.: Global stability in a class of prey–predator models, Bull. math. Biol. 40, 525-533 (1978) · Zbl 0378.92009
[29]Hsu, S. -B.: Limiting behavior for competing species, SIAM J. Appl. math. 34, 760-763 (1978) · Zbl 0381.92014 · doi:10.1137/0134064
[30]Capasso, V.: Mathematical structures of epidemic systems, Lecture notes in biomath. 97 (1993) · Zbl 0798.92024
[31]Guo, H.; Li, M. Y.; Shuai, Z.: Global stability of the endemic equilibrium of multigroup SIR epidemic model, Canad. appl. Math. quart. 14, 259-284 (2006) · Zbl 1148.34039
[32]Korobinikov, A.; Maini, P. K.: A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. biosci. Eng. 1, 57-60 (2004) · Zbl 1062.92061 · doi:10.3934/mbe.2004.1.57
[33]Horn, R. A.; Johnson, C. R.: Topics in matrix analysis, (1991)