zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters. (English) Zbl 1225.34061
Summary: Combining adaptive control theory with an antisymmetric structure, an extended adaptive controller which is more generalized and simpler than some existing controllers is designed. Under the controller, generalized function projective synchronization of two different uncertain hyperchaotic systems is achieved, and the unknown parameters are also estimated. In numerical simulations, the scaling function factors discussed in this paper are more complicated, and they have not been discussed in other papers. Corresponding simulation results are presented to show that the controller works well.
MSC:
34D06Synchronization
34C28Complex behavior, chaotic systems (ODE)
93C40Adaptive control systems
References:
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, No. 8, 821-823 (1990)
[2]Agiza, H. N.: Chaos synchronization of Lü dynamical system, Nonlinear anal. 58, 11-20 (2004) · Zbl 1057.34042 · doi:10.1016/j.na.2004.04.002
[3]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaotic oscillators, Phys. rev. Lett. 76, 1804-1807 (1996)
[4]Chen, Y.; Chen, X. X.; Gu, S. S.: Lag synchronization of structurally nonequivalent chaotic systems with time delay, Nonlinear anal.: theory, methods appl. 66, 1929-1937 (2007) · Zbl 1123.34336 · doi:10.1016/j.na.2006.02.033
[5]Wang, Y. W.; Guan, Z. H.: Generalized synchronization of continuous chaotic system, Chaos solitons fractals 27, 97-101 (2006) · Zbl 1083.37515 · doi:10.1016/j.chaos.2004.12.038
[6]El-Dessoky, M. M.: Anti-synchronization of four scroll attractor with fully unknown parameters, Nonlinear anal. RWA 11, 778-783 (2010) · Zbl 1181.37040 · doi:10.1016/j.nonrwa.2009.01.048
[7]Chen, D. L.; Sun, J. T.; Huang, C. S.: Impulsive control and synchronization of general chaotic system, Chaos solitons fractals 28, 213-218 (2006) · Zbl 1091.93023 · doi:10.1016/j.chaos.2005.05.057
[8]Xu, D.: Control of projective synchronization in chaotic systems, Phys. rev. E 63, 27201-27204 (2001)
[9]Hu, M.; Xu, Z.: Adaptive feedback controller for projective synchronization, Nonlinear anal. RWA 9, 1253-1260 (2008) · Zbl 1144.93364 · doi:10.1016/j.nonrwa.2007.03.005
[10]Park, J. H.: Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos solitons fractals 34, 1552-1559 (2007) · Zbl 1152.93407 · doi:10.1016/j.chaos.2006.04.047
[11]Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensioned chaotic systems, Phys. rev. Lett. 82, 3042-3045 (1999)
[12]Li, G. H.: Modified projective synchronization of chaotic system, Chaos solitons fractals 32, 1786-1790 (2007) · Zbl 1134.37331 · doi:10.1016/j.chaos.2005.12.009
[13]Chen, Y.; Li, X.: Function projective synchronization between two identical chaotic systems, Int. J. Mod. phys. C 18, No. 5, 883-888 (2007) · Zbl 1139.37301 · doi:10.1142/S0129183107010607
[14]Chen, Y.; An, H. L.; Li, Z. B.: The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems, Appl. math. Comput. 197, 96-110 (2008) · Zbl 1136.93410 · doi:10.1016/j.amc.2007.07.036
[15]Du, H. Y.; Zeng, Q. S.; Wang, C. H.: Modified function projective synchronization of chaotic system, Chaos solitons fractals 42, 2399-2404 (2009) · Zbl 1198.93011 · doi:10.1016/j.chaos.2009.03.120
[16]Yu, Y.; Li, H. X.: Adaptive generalized function projective synchronization of uncertain chaotic systems, Nonlinear anal. RWA 11, No. 4, 2456-2464 (2010) · Zbl 1202.34095 · doi:10.1016/j.nonrwa.2009.08.002
[17]Cai, Na; Jing, Y. W.; Zhang, S. Y.: Generalized projective synchronization of different chaotic systems based on antisymmetric structure, Chaos solitons fractals 42, 1190-1196 (2009) · Zbl 1198.93106 · doi:10.1016/j.chaos.2009.03.015
[18]Yan, Z. Y.: Controlling hyperchaos in the new hyperchaotic Chen system, Appl. math. Comput. 168, 1239-1250 (2005) · Zbl 1160.93384 · doi:10.1016/j.amc.2004.10.016
[19]Jia, Q.: Projective synchronization of a new hyperchaotic Lorenz system, Phys. lett. A 370, 40-45 (2007) · Zbl 1209.93105 · doi:10.1016/j.physleta.2007.05.028