zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiple periodic solutions in impulsive hybrid neural networks with delays. (English) Zbl 1225.34071
The authors establish sufficient conditions for the existence and exponential stability of multiple periodic solutions to an impulsive hybrid Hopfield-type neural network with both time-dependent and distributed delays. The proofs are based on the Leray-Schauder fixed point theorem and Lyapunov functionals.
34K13Periodic solutions of functional differential equations
92B20General theory of neural networks (mathematical biology)
34K45Functional-differential equations with impulses
[1]Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities, Proceedings of the national Academy of sciences 79, 2554-2558 (1982)
[2]Chua, L. O.; Yang, L.: Cellular neural networks: theory, IEEE transactions on circuits and systems 35, No. 10, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[3]Cohen, M.; Grossberg, S.: Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE transactions on systems, man, and cybernetics 13, No. 5, 815-826 (1983)
[4]Kosko, B.: Bidirectional associative memories, IEEE transactions on systems, man and cybernetics 18, No. 1, 49-60 (1988)
[5]Dinopoulos, N.: A study of the asymptotic behavior of neural networks, IEEE transactions on circuits and systems 36, 863-867 (1989) · Zbl 0675.94020 · doi:10.1109/31.31317
[6]Urakama, K.: Global stability of some class of neural networks, Transactions of the IEICE 72, 863-867 (1989)
[7]Denbo, A.; Farotimi, O.; Kailath, T.: Higher order absolute stable neural networks, IEEE transactions on circuits and systems 38, 57-65 (1991) · Zbl 0712.92002 · doi:10.1109/31.101303
[8]Koksal, S.; Sivasundaram, S.: Stability properties of the Hopfield-type neural networks, Dynamics and stability of systems 8, No. 3, 181-187 (1993) · Zbl 0795.93086 · doi:10.1080/02681119308806157
[9]Forti, M.; Tesi, A.: New conditions for global stability of neural networks with applications to linear and quadratic programming problems, IEEE transactions on circuits and systems 42, No. 7, 345-366 (1995) · Zbl 0849.68105 · doi:10.1109/81.401145
[10]Mohamad, S.; Gopalsamy, K.: Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Mathematics and computers in simulation 53, No. 1 – 2, 1-39 (2000)
[11]Leela, S.; Mcrae, F.; Sivasundaram, S.: Controllability of impulsive differential equations, Journal of mathematical analysis and applications 177, No. 1, 24-30 (1993) · Zbl 0785.93016 · doi:10.1006/jmaa.1993.1240
[12]Sivasundaram, S.; Uvah, J.: Controllability of impulsive hybrid integro-differential systems, Nonlinear analysis: hybrid systems 2, No. 4, 1003-1009 (2008) · Zbl 1163.93011 · doi:10.1016/j.nahs.2008.04.003
[13]Ahmad, B.; Sivasundaram, S.: Instability criteria for impulsive hybrid state dependent delay integrodifferential systems, Nonlinear analysis: real world applications 11, No. 2, 750-758 (2010) · Zbl 1187.34095 · doi:10.1016/j.nonrwa.2009.01.011
[14]Akça, H.; Alassar, R.; Covachev, V.; Yurtsever, H.: Discrete-time impulsive Hopfield neural networks with finite distributed delays, Computer assisted mechanics and engineering sciences 14, No. 2, 145-158 (2007) · Zbl 1122.92001
[15]Huang, Z. -T.; Luo, X. -S.; Yang, Q. -G.: Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse, Chaos, solitons and fractals 34, No. 3, 878-885 (2007) · Zbl 1154.34380 · doi:10.1016/j.chaos.2006.03.112
[16]Li, K.: Stability analysis for impulsive Cohen – Grossberg neural networks with time-varying delays and distributed delays, Nonlinear analysis: real world applications 10, No. 5, 2784-2798 (2009) · Zbl 1162.92002 · doi:10.1016/j.nonrwa.2008.08.005
[17]Li, Y.; Yang, C.: Global exponential stability analysis on impulsive bam neural networks with distributed delays, Journal of mathematical analysis and applications 324, No. 2, 1125-1139 (2006) · Zbl 1102.68117 · doi:10.1016/j.jmaa.2006.01.016
[18]Liu, B.; Huang, L.: Global exponential stability of bam neural networks with recent-history distributed delays and impulses, Neurocomputing 69, No. 16 – 18, 2090-2096 (2006)
[19]Mohamad, S.; Gopalsamy, K.; Akça, H.: Exponential stability of artificial neural networks with distributed delays and large impulses, Nonlinear analysis: real world applications 9, No. 3, 872-888 (2008) · Zbl 1154.34042 · doi:10.1016/j.nonrwa.2007.01.011
[20]Ping, Z.; Lu, J.: Global exponential stability of impulsive Cohen – Grossberg neural networks with continuously distributed delays, Chaos, solitons and fractals 41, No. 1, 164-174 (2009) · Zbl 1198.34159 · doi:10.1016/j.chaos.2007.11.022
[21]Yin, L.; Li, X.: Impulsive stabilization for a class of neural networks with both time-varying and distributed delays, Advances in difference equations (2009)
[22]Kaslik, E.; Balint, S.: Configurations of steady states for Hopfield-type neural networks, Applied mathematics and computation 182, No. 1, 934-946 (2006) · Zbl 1115.93062 · doi:10.1016/j.amc.2006.04.054
[23]Huang, Z.; Mohamad, S.; Bin, H.: Multistability of hnns with almost periodic stimuli and continuously distributed delays, International journal of systems science 40, No. 6, 615-625 (2009)
[24]Nie, X.; Cao, J.: Multistability of competitive neural networks with time-varying and distributed delays, Nonlinear analysis: real world applications 10, No. 2, 928-942 (2009) · Zbl 1167.34383 · doi:10.1016/j.nonrwa.2007.11.014
[25]Wang, X.; Jiang, M.; Fang, S.: Stability analysis in Lagrange sense for a non-autonomous Cohen – Grossberg neural network with mixed delays, Nonlinear analysis, theory, methods and applications 70, No. 12, 4294-4306 (2009) · Zbl 1162.34338 · doi:10.1016/j.na.2008.09.019
[26]Yang, X.; Liao, X.; Evans, D. J.; Tang, Y.: Existence and stability of periodic solution in impulsive Hopfield neural networks with finite distributed delays, Physics letters A 343, 108-116 (2005) · Zbl 1184.34080 · doi:10.1016/j.physleta.2005.06.008
[27]Li, Y.; Xing, W.; Lu, L.: Existence and global exponential stability of periodic solution of a class of neural networks with impulses, Chaos, solitons and fractals 27, 437-445 (2006) · Zbl 1084.68103 · doi:10.1016/j.chaos.2005.04.021
[28]Stamov, G. Tr.; Stamova, I. M.: Almost periodic solutions for impulsive neural networks with delay, Applied mathematical modelling 31, 1263-1270 (2007) · Zbl 1136.34332 · doi:10.1016/j.apm.2006.04.008
[29]Yang, Y.; Cao, J.: Stability and periodicity in delayed cellular neural networks with impulsive effects, Nonlinear analysis: real world applications 8, 362-374 (2007) · Zbl 1115.34072 · doi:10.1016/j.nonrwa.2005.11.004
[30]Gu, H.; Jiang, H.; Teng, Z.: Stability and periodicity in high-order neural networks with impulsive effects, Nonlinear analysis 68, 3186-3200 (2008)
[31]Zeng, Z.; Wang, J.: Multiperiodicity of discrete-time delayed neural networks evoked by periodic external inputs, IEEE transactions on neural networks 17, No. 5, 1141-1151 (2006)
[32]Zeng, Z.; Wang, J.: Multiperiodicity and exponential attractivity evoked by periodic external inputs in delayed cellular neural networks, Neural computation 18, No. 4, 848-870 (2006) · Zbl 1107.68086 · doi:10.1162/neco.2006.18.4.848
[33]Cao, J.; Feng, G.; Wang, Y.: Multistability and multiperiodicity of delayed Cohen – Grossberg neural networks with a general class of activation functions, Physica D: Nonlinear phenomena 237, No. 13, 1734-1749 (2008) · Zbl 1161.34044 · doi:10.1016/j.physd.2008.01.012
[34]Wang, L.; Lu, W.; Chen, T.: Multistability and new attraction basins of almost-periodic solutions of delayed neural networks, IEEE transactions on neural networks 20, No. 10, 1581-1593 (2009)
[35]Bainov, D.; Simeonov, P.: Impulsive differential equations, (1995) · Zbl 0828.34002
[36]Morita, M.: Memory and learning of sequential patterns by nonmonotone neural networks, Neural networks 9, No. 8, 1477-1489 (1996)