zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improved delay-dependent stability criterion for neural networks with time-varying delay. (English) Zbl 1225.34080
A class of neural networks with time-varying delay is studied. The authors prove a delay-dependent asymptotic stability criterion for such nets by means of a Lyapunov functional containing a triple-integral term. Numerical examples are provided in order to illustrate the obtained theoretical results.
MSC:
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
References:
[1]Cao, J. D.; Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE trans. Neural netw. 13, 457-463 (2002)
[2]Arik, S.: Global asymptotic stability of a larger class of neural networks with constant time delay, Phys. lett. A 311, 504-511 (2002) · Zbl 1098.92501 · doi:10.1016/S0375-9601(03)00569-3
[3]Cao, J. D.; Wang, J.: Global asymptotic and robust stability of recurrent neural networks with time delays, IEEE trans. Circuits syst. I 52, No. 2, 417-426 (2005)
[4]Park, J. H.; Kwon, O. M.: Further results on state estimation for neural networks of neutral-type with time-varying delay, Appl. math. Comput. 208, 69-75 (2009) · Zbl 1169.34334 · doi:10.1016/j.amc.2008.11.017
[5]Samli, R.; Arik, S.: New results for global stability of a class of neutral-type neural systems with time delays, Appl. math. Comput. 210, 564-570 (2009) · Zbl 1170.34352 · doi:10.1016/j.amc.2009.01.031
[6]Tian, J. K.; Zhou, X. B.: Improved asymptotic stability criteria for neural networks with interval time-varying delay, Expert syst. Appl. 37, 7521-7525 (2010)
[7]Kwon, O. M.; Park, J. H.: Exponential stability analysis for uncertain neural networks with interval time-varying delays, Appl. math. Comput. 212, 530-541 (2009) · Zbl 1179.34080 · doi:10.1016/j.amc.2009.02.043
[8]He, Y.; Liu, G. P.; Rees, D.: New delay-dependent stability criteria for neural networks with time-varying delay, IEEE trans. Neural netw. 18, 310-314 (2007)
[9]He, Y.; Liu, G.; Rees, D.; Wu, M.: Stability analysis for neural networks with time-varying interval delay, IEEE trans. Neural netw. 18, 1850-1854 (2007)
[10]Hua, C. C.; Long, C. N.; Guan, X. P.: New results on stability analysis of neural networks with time-varying delays, Phys. lett. A 352, 335-340 (2006) · Zbl 1187.34099 · doi:10.1016/j.physleta.2005.12.005
[11]Kwon, O. M.; Park, J. H.; Lee, S. M.: On robust stability for uncertain neural networks with interval time-varying delays, IET control theory appl. 2, 625-634 (2008)
[12]Chen, Y.; Wu, Y.: Novel delay-dependent stability criteria of neural networks with time-varying delay, Neurocomputing 72, 1065-1070 (2009)
[13]Sun, J.; Liu, G. P.; Chen, J.; Rees, D.: Improved stability criteria for neural networks with time-varying delay, Phys. lett. A 373, 342-348 (2009) · Zbl 1227.92003 · doi:10.1016/j.physleta.2008.11.048
[14]Qian, W.; Li, T.; Cong, S.; Fei, S.: Improved stability analysis on delayed neural networks with linear fractional uncertainties, Appl. math. Comput. 217, 3596-3606 (2010) · Zbl 1209.34087 · doi:10.1016/j.amc.2010.09.014
[15]Kwon, O. M.; Park, J. H.: Improved delay-dependent stability criterion for neural networks with time-varying delays, Phys. lett. A 373, 529-535 (2009) · Zbl 1227.34030 · doi:10.1016/j.physleta.2008.12.005
[16]Song, Q. K.; Zhao, Z. J.; Li, Y. M.: Global exponential stability of BAM neural networks with distributed delays and reaction diffusion terms, Phys. lett. A 335, 213-225 (2005) · Zbl 1123.68347 · doi:10.1016/j.physleta.2004.12.007
[17]Arik, S.; Tavsanoglu, V.: Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays, Neurocomputing 68, 161-176 (2005)
[18]Arik, S.: Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays, Phys. lett. A 351, 85-91 (2006)
[19]Zhou, Q.; Wan, L.: Global robust asymptotic stability analysis of BAM neural networks with time delay and impulse: an LMI approach, Appl. math. Comput. 216, 1538-1545 (2010) · Zbl 1200.34088 · doi:10.1016/j.amc.2010.03.003
[20]Liao, X. F.; Chen, G.; Sanchez, E. N.: Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach, Neural netw. 15, 855-866 (2002)
[21]Mahmoud, M. S.; Ismail, A.: Improved results on robust exponential stability criteria for neutral-type delayed neural networks, Appl. math. Comput. 217, 3011-3019 (2010) · Zbl 1213.34084 · doi:10.1016/j.amc.2010.08.034
[22]Li, C. D.; Feng, G.: Delay-interval-dependent stability of recurrent neural networks with time-varying delay, Neurocomputing 72, 1179-1183 (2009)
[23]Hu, L.; Gao, H.; Zheng, W.: Novel stability of cellular neural networks with interval time-varying delay, Neural netw. 21, 1458-1463 (2008)
[24]Xu, S.; Lam, J.: A new approach to exponential stability analysis of neural networks with time-varying delays, Neural netw. 19, 76-83 (2006) · Zbl 1093.68093 · doi:10.1016/j.neunet.2005.05.005
[25]Zhao, H.; Cao, J.: New conditions for global exponential stability of cellular neural networks with delays, Neural netw. 18, 1332-1340 (2005) · Zbl 1083.68108 · doi:10.1016/j.neunet.2004.11.010
[26]Wang, Z.; Liu, Y.; Li, M.; Liu, X.: Stability analysis for stochastic Cohen – Grossberg neural networks with mixed time delays, IEEE trans. Neural netw. 17, 814-820 (2006)
[27]Guo, Z.; Huang, L.: LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations, Appl. math. Comput. 215, 889-900 (2009) · Zbl 1187.34098 · doi:10.1016/j.amc.2009.06.013
[28]Park, J. H.; Kwon, O. M.: On improved delay-dependent criterion for global stability of bidirectional associative memory neural networks with time-varying delays, Appl. math. Comput. 199, 435-446 (2008) · Zbl 1149.34049 · doi:10.1016/j.amc.2007.10.001
[29]Guo, Z.; Huang, L.: LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations, Appl. math. Comput. 215, 889-900 (2009) · Zbl 1187.34098 · doi:10.1016/j.amc.2009.06.013
[30]Mou, S.; Gao, H.; Lam, J.; Qiang, W.: New criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay, IEEE trans. Neural netw. 19, 532-535 (2008)
[31]Boyd, S.; Ghaoui, L. El.; Feron, E.; Balakrishnam, V.: Linear matrix inequalities in systems and control, (1994)
[32]Kwon, O. M.; Park, J. H.: New delay-dependent robust stability criterion for uncertain neural networks with time-varying delays, Appl. math. Comput. 205, 417-427 (2008) · Zbl 1162.34060 · doi:10.1016/j.amc.2008.08.020
[33]Kwon, O. M.; Park, J. H.: Delay-dependent stability for uncertain cellular neural networks with discrete and distribute time-varying delays, J. franklin inst. 345, 766-778 (2008) · Zbl 1169.93400 · doi:10.1016/j.jfranklin.2008.04.011
[34]Ji, D. H.; Koo, J. H.; Won, S. C.; Lee, S. M.; Park, J. H.: Passivity-based control for Hopfield neural networks using convex representation, Appl. math. Comput. 217, 6168-6175 (2011) · Zbl 1209.93056 · doi:10.1016/j.amc.2010.12.100
[35]Lee, S. M.; Kwon, O. M.; Park, J. H.: A novel delay-dependent criterion for delayed neural networks of neutral type, Phys. lett. A 374, 1843-1848 (2010)
[36]Lee, S. M.; Kwon, O. M.; Park, J. H.: A new approach to stability analysis of neural networks with time-varying delay via novel Lyapunov – Krasovskiĭ function, Chin. phys. B 19 (2010)
[37]Kwon, O. M.; Lee, S. M.; Park, J. H.: Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays, Phys. lett. A 374, 1232-1241 (2010)