zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Attractor and ultimate boundedness for stochastic cellular neural networks with delays. (English) Zbl 1225.34091
Summary: This paper investigates attractors and ultimate boundedness of stochastic cellular neural networks with delays. By employing the Lyapunov method and a Lasalle-type theorem, novel results and sufficient criteria for the existence of an attractor and ultimate boundedness are obtained.
MSC:
34K50Stochastic functional-differential equations
34K12Growth, boundedness, comparison of solutions of functional-differential equations
92B20General theory of neural networks (mathematical biology)
34K25Asymptotic theory of functional-differential equations
References:
[1]Roska, T.; Chua, L.: Cellular neural networks with nonlinear and delay-type template elements, Int. J. Circuit theory appl. 20, 469-481 (1992) · Zbl 0775.92011 · doi:10.1002/cta.4490200504
[2]Liu, D.; Michel, A. N.: Cellular neural networks for associative memories, IEEE trans. Circuits syst. I 40, 119-121 (1993) · Zbl 0800.92046 · doi:10.1109/82.219843
[3]Forti, M.; Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE trans. Circuits syst. I 42, 354-366 (1995) · Zbl 0849.68105 · doi:10.1109/81.401145
[4]Huang, C.; Cao, J.: Almost sure exponential stability of stochastic cellular neural networks with unbounded distributed delays, Neurocomputing 72, 3352-3356 (2009)
[5]Huang, C.; Cao, J.: On pth moment exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays, Neurocomputing 73, 986-990 (2010)
[6]Huang, C.; Chen, P.; He, Y.; Huang, L.; Tan, W.: Almost sure exponential stability of delayed Hopfield neural networks, Appl. math. Lett. 21, 701-705 (2008) · Zbl 1152.34372 · doi:10.1016/j.aml.2007.07.030
[7]Huang, C. X.; He, Y. G.; Huang, L. H.; Zhu, W. J.: Pth moment stability analysis of stochastic recurrent neural networks with time-varying delays, Inform. sci. 178, 2194-2203 (2008) · Zbl 1144.93030 · doi:10.1016/j.ins.2008.01.008
[8]Huang, C.; He, Y.; Wang, H.: Mean square exponential stability of stochastic recurrent neural networks with time-varying delays, Comput. math. Appl. 56, 1773-1778 (2008) · Zbl 1152.60346 · doi:10.1016/j.camwa.2008.04.004
[9]Rakkiyappan, R.; Balasubramaniam, P.: Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays, Appl. math. Comput. 198, 526-533 (2008) · Zbl 1144.34375 · doi:10.1016/j.amc.2007.08.053
[10]Sun, Y.; Cao, J.: Pth moment exponential stability of stochastic recurrent neural networks with time-varying delays, Nonlinear anal. RWA 8, 1171-1185 (2007) · Zbl 1196.60125 · doi:10.1016/j.nonrwa.2006.06.009
[11]Song, Q.; Wang, Z.: Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays, Physica A 387, 3314-3326 (2008)
[12]Wang, Z.; Fang, J.; Liu, X.: Global stability of stochastic high-order neural networks with discrete and distributed delays, Chaos solitons fractals 36, 388-396 (2008) · Zbl 1141.93416 · doi:10.1016/j.chaos.2006.06.063
[13]Zhao, H.; Ding, N.: Dynamic analysis of stochastic bidirectional associative memory neural networks with delays, Chaos solitons fractals 32, 1692-1702 (2007) · Zbl 1149.34054 · doi:10.1016/j.chaos.2005.12.010
[14]Zhao, H.; Ding, N.; Chen, L.: Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays, Chaos solitons fractals 40, 1653-1659 (2009) · Zbl 1198.34173 · doi:10.1016/j.chaos.2007.09.044
[15]Chen, W. H.; Lu, X. M.: Mean square exponential stability of uncertain stochastic delayed neural networks, Phys. lett. A 372, No. 7, 1061-1069 (2008) · Zbl 1217.92005 · doi:10.1016/j.physleta.2007.09.009
[16]Huang, H.; Feng, G.: Delay-dependent stability for uncertain stochastic neural networks with time-varying delay, Physica A 381, No. 15, 93-103 (2007)
[17]Zhang, J.; Shi, P.; Qiu, J.: Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays, Nonlinear anal. RWA 8, No. 4, 1349-1357 (2007) · Zbl 1124.34056 · doi:10.1016/j.nonrwa.2006.06.010
[18]Mao, X. R.: Stochastic differential equations and applications, (1997)
[19]Mao, X. R.: A note on the lasalle-type theorems for stochastic differential delay equations, J. math. Anal. appl. 268, 125-142 (2002) · Zbl 0996.60064 · doi:10.1006/jmaa.2001.7803